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Abstract—Accurate simulation of unsteady turbulent
flow is critical for improved design of greener aircraft
that are quieter and more fuel-efficient. We demonstrate
application of PyFR, a Python based computational fluid
dynamics solver, to petascale simulation of such flow
problems. Rationale behind algorithmic choices, which
offer increased levels of accuracy and enable sustained
computation at up to 58% of peak DP-FLOP/s on unstruc-
tured grids, will be discussed in the context of modern
hardware. A range of software innovations will also be
detailed, including use of runtime code generation, which
enables PyFR to efficiently target multiple platforms,
including heterogeneous systems, via a single implemen-
tation. Finally, results will be presented from a full-
scale simulation of flow over a low-pressure turbine blade
cascade, along with weak/strong scaling statistics from the
Piz Daint and Titan supercomputers, and performance
data demonstrating sustained computation at up to 13.7
DP-PFLOP/s.

I. JUSTIFICATION FOR ACM GORDON

BELL PRIZE

• Demonstrated use of Python in a high-end HPC
context for simulation of real-world flow problems
at up to 13.7 DP-PFLOP/s.

• Detailed how a single Python codebase can
target multiple platforms, including heterogeneous
systems, using an innovative runtime code-
generation paradigm.

• Achieved 58% computational efficiency for an un-
structured mesh fluid dynamics simulation.

II. PERFORMANCE ATTRIBUTES

Performance attributes of PyFR are listed in Table I.

TABLE I
PERFORMANCE ATTRIBUTES OF PYFR

Attribute Value

Category of Achievement Scalability and Peak Performance

Type of Method Explicit Flux Reconstruction

Nature of Results Application with and without I/O

Number Precision Double

System Scale Measured on Full-Scale Systems

Measurement Mechanism Timers and Counted FLOPs

III. OVERVIEW OF THE PROBLEM

Air transportation moves over 3.5 billion passengers
annually and produces upwards of 700 million tonnes
of CO2 and other greenhouse gases (GHG) [1]. The
impact of these emissions is compounded by the fact they
are released at high altitudes. As a consequence, GHG
emissions from aviation are estimated to be 2-4 times
more potent than similar emissions at sea level, and are
a significant driver of climate change [2]. In addition to
GHG emissions, aviation is a major contributor to noise
pollution, which has significant adverse environmental
and health impacts. For example, it has been shown that
aircraft noise is linked to increased rates of stroke, coro-
nary heart disease, and cardiovascular disease [3]. Global
demand for air transportation is rising, particularly in
emerging markets and developing countries. The total
number of passengers increased by 6.5% in 2015 alone,
with similar growth forecasts for the foreseeable future
[1].

The European Union (EU) and the United States (US)
have embarked on multi-billion dollar research projects
to reduce the environmental impacts of aviation. The EU
Clean Sky project [4] has the goal of developing and
validating technology to enable a 50% reduction in CO2

emissions, an 80% reduction in NOX emissions, and a
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50% reduction in aircraft noise. Similarly, the National
Aeronautics and Space Administration (NASA) has just
completed the multi-year Environmentally Responsible
Aviation (ERA) [5] project to explore the feasibility, ben-
efits, and technical risks of vehicle concepts that reduce
the impact of aviation on the environment. Realising
the objectives of Clean Sky and ERA depends on the
ability to accurately simulate flow physics associated
with various aircraft components using computational
fluid dynamics (CFD), which according to the NASA
Vision 2030 Study has “fundamentally changed the
aerospace design process [...] advanced simulation capa-
bilities provide added physical in-sight, enable superior
designs at reduced cost and risk, and open new frontiers
in aerospace vehicle design and performance” [6].

One particularly important CFD use-case is the design
of jet engine turbines (see Fig. 1). These extract energy
from the hot exhaust gasses exiting the combustion
chamber of the engine, and use that energy to drive
the compressor, fan, and other auxiliary systems. Since
this exhaust energy would otherwise contribute directly
to thrust, any inefficiencies in the turbine design can
have a significant detrimental effect on total aerodynamic
efficiency [7]. In addition, turbine cascades typically
comprise about one-third of the total engine weight [8].
Every 10kg of aircraft weight reduction can yield over
4 tons of CO2 reduction per year [1], and so the turbine
represents a significant opportunity for reductions in
weight and resulting GHG emissions.

Approximately half the weight of a turbine comes
from the turbine blades [9][10]. In order to reduce
this contribution, modern turbines are designed to use
as few blades as possible. However, this results in
individual blades being under higher-loading, which can
lead to fully-separated flow over the aft-portion of each
blade; introducing complex, unsteady, three-dimensional
phenomena, and reduced efficiency. This reduction in
efficiency translates almost directly to an increase in
specific fuel consumption [10]. Therefore, there exists a
direct trade-off between reducing the number of blades—
and thus total turbine weight—while maintaining an
optimum level of aerodynamic performance.

A representative set of highly-loaded configurations
are the T106 family of low-pressure turbine (LPT) linear
cascades. Based around the mid-span section of the
PW2037 LPT blade, these cascades have been tested ex-
perimentally in several previous studies [11][12]. In the
current study we will apply PyFR [13][14] to simulate
unsteady turbulent compressible flow over the T106D
configuration described by Stadtmuller et al. [11][12],

Fig. 1. Schematic illustration of various components in a Rolls-Royce
Trent XWB turbofan jet engine. The turbine stages can be seen on
the right hand side of the image. Image copyright Rolls-Royce plc.
Reused with permission.

which has increased pitch and higher loading relative to
the original blade design condition. This case is represen-
tative of the general trends in turbine design, with fewer
highly-loaded blades per stage, and is particularly chal-
lenging as it has a large separation bubble on the suction
side of each blade. In particular, we will simulate flow
over the full-scale T106D configuration, including five
blades at full span, with isotropic resolution throughout
the domain. As such, in terms of LPT simulations, we
believe the scale and overall degrees of freedom (DOF)
count to be unprecedented.

IV. CURRENT STATE OF THE ART

The development of novel numerical algorithms has
been critical to the continued progression of CFD as
an analysis and design tool [6]. The Reynolds-averaged
Navier-Stokes (RANS) approach, combined with exper-
imental campaigns, is widely used for industrial design.
However, the well-known limitations of RANS methods
for unsteady separated flows have confined their use
to a limited region of the operating design space [6].
Scale-resolving techniques, such as large eddy simula-
tion (LES), implicit LES (ILES), and direct numerical
simulation (DNS) are known to be significantly more
accurate in flow regimes where RANS methods often
fail. However, these methods are currently considered
to be prohibitively expensive by industry. Industrial
deployment of scale-resolving techniques will be critical
in achieving the step-change technology requirements
underpinning the objectives of Clear Sky and ERA.

The majority of CFD codes used to perform scale-
resolving simulation of unsteady compressible flow are



based on finite volume (FV) methods with second-order
accuracy in space eg. OpenFOAM [15], SU2 [16][17],
CHARLES [18]. These methods are able to operate on
unstructured meshes, and thus in the vicinity of complex
geometries, and have been demonstrated to scale to
∼1 million cores [19]. However, they are characterised
by a low FLOPS-to-bytes ratio and a high degree of
indirect memory access. As such they have been unable
to leverage the increasing arithmetic capabilities of mod-
ern hardware platforms, which have significantly out-
paced advances in random access memory. Algorithms
which have traditionally been compute bound—such as
dense matrix-vector products—are now limited instead
by bandwidth to/from memory. This is epitomised in
Fig. 2. Whereas the processors of two decades ago had
FLOPS-per-byte of ∼0.2, more recent chips have ratios
well in excess of 5. This disparity is not limited to just
conventional CPUs. Massively parallel accelerators and
co-processors such as the NVIDIA K20X and Intel Xeon
Phi 5110P have ratios of 5.24 and 3.16, respectively.
Hence the performance of second-order FV methods has
more closely tracked the grey (memory bandwidth) line
in Fig. 2, as opposed to the black (compute) line. Specif-
ically, cache-optimised GPU-based implementations of
unstructured FV schemes are heavily memory bandwidth
bound, and have been observed to achieve less than 3
percent of peak FLOP/s [20].

In addition to low arithmetic intensity, it is unclear
whether second-order accurate FV schemes can effec-
tively resolve all relevant phenomena associated with
unsteady compressible turbulent flows, since the methods
can be overly dissipative. In recent decades a range of
so called high-order accurate schemes have emerged for
simulating compressible flows on unstructured meshes.
These methods attempt to combine the geometrical flex-
ibility of second-order FV schemes with the superior
convergence properties of high-order spectral methods
(which cannot be used in complex geometries). Broadly
speaking such methods can be classified as either high-
order FV schemes or high-order discontinuous finite
element (FE) schemes. The most popular high-order
FV schemes include k-exact methods [21], FV type
essentially non-oscillatory (ENO) methods [22][23], and
FV type weighted ENO (WENO) methods [24]. The
most popular high-order discontinuous FE methods in-
clude high-order discontinuous Galerkin (DG) methods
[25][26] and spectral difference (SD) methods; which
are similar to DG methods, but based on the governing
system in its differential form [27][28]. A comprehen-
sive review of all aforementioned methods has been

presented by Wang [29]. Whilst all these methods offer
increased solution accuracy, high-order FV schemes such
as ENO/WENO methods still suffer from low FLOPS-
to-byte ratios, and significant indirection. However, the
more compact high-order discontinuous FE schemes
offer a large degree of structured computation with
substantially less indirection. As such, explicit imple-
mentations of these methods can effectively leverage
the capabilities of modern hardware platforms. The flux
reconstruction (FR) approach [30] adopted in this work
is a unifying framework encompassing DG and SD
schemes, as well as a range of other similar methods
with various stability and accuracy properties [31].

In terms of implementation, CFD codes for HPC are
typically written in low-level languages such as C, C++,
or Fortran. In addition they are typically designed to
target a single platform, and where multiple platforms
are supported there is often a degree of cross-platform
feature disparity. Whilst these low-level implementations
can be performant, lack of portability, and in particular
the lack of any ability to target heterogeneous systems,
will likely limit their deployment on next-generation
systems.
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Fig. 2. Trends in the peak compute performance (double precision)
and memory bandwidth of server-class Intel processors from 1994-
2014. The quotient of these two measures yields the FLOPS-per-byte
of a device. Reproduced with modifications from Witherden et al. [13]
with permission. Partial data courtesy of Jan Treibig.



V. INNOVATIONS REALISED

A. Overview

PyFR is an open-source Python framework for solv-
ing the compressible Navier-Stokes equations on mixed
unstructured meshes using a variety of hardware plat-
forms. As a code, PyFR realises a variety of innovations
when compared with the current state of the art. Firstly,
instead of using a bandwidth-limited FV scheme, PyFR
utilises the high-order FR approach. The FR approach
allows PyFR to achieve high-order accuracy on mixed
unstructured meshes while simultaneously exposing a
large degree of structured computation. Secondly, unlike
traditional HPC codes PyFR is written predominantly
in the Python programming language. Thirdly, PyFR is
performance portable across a range of modern hardware
platforms including AMD GPUs, NVIDIA GPUs, and
CPUs [14]. This is accomplished through a combina-
tion of a C-like domain specific language (DSL) based
around the Mako templating engine and runtime code
generation. Kernels are specified once in this language
and are then translated by the various hardware backends
in PyFR—at runtime—into either CUDA, OpenCL, or
OpenMP annotated C code. The design of PyFR en-
sures that all compute is performed on-device with the
code designed at all levels to overlap communication
with computation [13]. Fourthly, through the use of a
common MPI wire-format across all supported hardware
platforms, PyFR is able to run on heterogeneous systems
with different MPI ranks being assigned to different
pieces of hardware [14]. This enables PyFR to make
better use of emerging architectures which incorporate a
mix of CPUs and accelerators. Taken as a whole, these
innovations allow PyFR to run on platforms from the
Raspberry Pi through to 18, 000 K20X GPUs of Titan,
via heterogeneous systems, with less than 8, 000 lines of
code.

B. Flux Reconstruction

The Navier–Stokes equations for compressible flow
can be written in conservative form as

∂u

∂t
+∇ · f(u,∇u) = S(x, t),

where u(x, t) is a state vector describing the solution, f
is the flux of the solution, and S is a source term. To
perform a simulation using FR the computational domain
of interest is first discretised into an mesh of conforming
and potentially curved elements. Inside of each element
two sets of points are defined: one set in the interior,

commonly termed the solution points, and another on
the surface, termed the flux points.

In FR the solution polynomial inside of each element
is defined by the values of u at the solution points, in
a nodal fashion, and is in general discontinuous across
elements. This gives rise to a so-called Riemann problem
on the interfaces between elements. By solving these
Riemann problems it is possible to obtain a common
normal flux polynomial along each interface between
elements. This polynomial can then be used to correct the
divergence of the so-called ‘discontinuous flux’ inside
of each element via a so-called ‘correction function’,
to yield an approximation of ∇ · f that sits in the
same polynomial space as the solution. Once ∇ · f has
been obtained it can be used to march the solution
forwards in time via a suitable temporal discretisation.
Obtaining ∇· f requires two distinct kinds of operations
(i) interpolating quantities between flux/solution points,
and (ii) evaluating quantities point-wise (such as the flux)
at either individual solution points or pairs of flux points.
When interpolating quantities, say from the solution
points to the flux points, the value at each flux point is
given as a weighted sum of the quantity at each solution
point

q
(f)
e,i =

∑
j

αe,ijq
(u)
e,j ,

where q represents the quantity, e the element num-
ber, i the flux point number, and αe,ij is a matrix of
coefficients that encodes the interpolation. This can be
identified as a matrix-vector product; or in the case of
an N -element simulation, N matrix-vector products. If
the quantities are first mapped from physical space to
a reference space then the αe,ij coefficients become
identical for each element of a given type. Hence, the
above operation can be reduced to a single matrix-matrix
product. Depending on the order of the solution poly-
nomial with each element, between ∼50% and ∼85%
of the wall clock time in PyFR is spent performing
such multiplications. The remaining time is spent in the
point-wise operations. These kernels are a generalisation
of a function taking the form g(in1[i], in2[i],
..., &out1[i]). As there are no data dependencies
between iterations the point-wise kernels are both readily
parallelisable and highly bound by available memory
bandwidth.

We note that both matrix multiplication and point-
wise evaluation are amenable to acceleration and thus
it is possible to offload all computation within an FR
step. Moreover, owing to the discontinuous nature of



the solution polynomials, FR schemes are very well
suited to distributed memory parallelism. Specifically,
all communication between ranks takes the form of
shallow halo exchanges, and all of these exchanges can
be performed asynchronously permitting communication
to be overlapped with computation.

C. High Performance Computing with Python

Traditionally, the majority of large scale HPC codes
are written in C, C++, or Fortran. Although perfor-
mant these languages lack productivity features such as
garbage collection, duck typing, and ‘batteries included’
runtime libraries. When analysing HPC applications au-
thored in these languages it is not usual for a substantial
proportion of the total source lines to be associated with
boiler-plate tasks such as memory management, input
file parsing, and the handling of error conditions; none
of which are in the critical path.

Within PyFR we opt to use the rapid application
development (RAD) language Python to eliminate much
of this boiler plate code. The idea is for high-level Python
code to invoke low-level kernels which are generated
at run-time (see section V-D). The overheads associated
with this type of approach are minimal and typically of
the order of the time required for a foreign function call.

The Python programming language is particularly
well suited for this approach. The scientific Python
community have worked to develop a variety of mod-
ules which wrap standard HPC libraries such as MPI
(mpi4py), HDF5 (h5py), CUDA (PyCUDA), OpenCL
(PyOpenCL), and the offloading mechanism used by the
Intel MIC (pyMIC). As such it is possible to code al-
most all memory management, I/O, and communications
related routines in Python.

D. Performance Portability and Runtime Code Genera-
tion

Modern hardware is becoming increasingly heteroge-
neous. This realisation is apparent at a variety of scales—
from desktop CPUs featuring fully programmable inte-
grated GPUs to high-end clusters containing a mix of
both CPUs and accelerators. It is therefore important that
codes are capable of running across a broad spectrum of
hardware platforms and, more importantly, maintaining
performance portability across these platforms.

As outlined in the previous sections, the building block
of the FR approach is matrix-matrix multiplications.
This property is extremely desirable from the standpoint
of performance portability as vendors typically provide

highly optimised, often hand-written, matrix multiplica-
tion routines as part of their software development kits.
Use of these routines is crucial for achieving satisfactory
single-node performance.

One means of achieving portability per se is to use
OpenCL. Within the context of FR, however, OpenCL
based solutions have been shown to result in substandard
performance [14]. This is on account of the fact that
most vendor’s linear algebra libraries, including NVIDIA
cuBLAS and Intel MKL, lack OpenCL interfaces. Hence,
to achieve performance portability an FR code must
feature ‘backends’ for multiple programming languages.
However, as a consequence it is necessary reimplement
the point-wise kernels multiple times—once for each
supported backend.

PyFR innovates here by defining a DSL. Kernels are
written once using this DSL, which the backend then
translates into its native language. In PyFR the DSL is
built on top of the popular Mako templating engine. The
specification of the DSL exploits the fact that—at least
for point-wise operations—the major parallel program-
ming languages C/OpenMP, CUDA, and OpenCL differ
only in how kernels are prototyped and how elements
are iterated over. In addition to platform portability, the
use of a run-time based templating language confers
several other advantages. Firstly, Mako permits Python
expressions to be used inside templates to aid in gener-
ating the source code for a kernel. This is significantly
more flexible than the C pre-processor and much simpler
than C++ templates. Secondly, as the end result is a
Python string it is possible to post-process the code
before it is compiled. A use case for this capability
within PyFR is to ensure that when running at single
precision all floating point constants are suffixed by .f.
Doing so helps to avoided unwanted auto-promotion of
expressions and avoids the need for awkward casts inside
the kernel itself. Moreover, it is also trivial to allow
for user-defined functions and expressions to be inserted
into a kernel. PyFR, for example, permits the form of
a source term, S(x, t), to be specified as part of the
input configuration file. Without runtime code generation
this would require an expression evaluation library, the
performance of which is unlikely to be competitive with
the code generated by an optimising compiler.

An example of a kernel written in the DSL is shown
in Fig. 3. There are several points of note. Firstly,
the kernel is purely scalar in nature; choices such as
how to vectorise an operation or how to gather data
from memory are all delegated to the backend-specific
templating engine. The kernel simply states how to



1. <%inherit file=’base’/>
2. <%namespace
3. module=’pyfr.backends.base.makoutil’
4. name=’pyfr’/>
5.
6. <%pyfr:kernel
7. name=’negdivconf’ ndim=’2’
8. t=’scalar fpdtype_t’
9. tdivf=’inout fpdtype_t[${str(nvars)}]’

10. ploc=’in fpdtype_t[${str(ndims)}]’
11. rcpdj=’in fpdtype_t’>
12. % for i, ex in enumerate(srcex):
13. tdivf[${i}] = -rcpdj*tdivf[${i}] + ${ex};
14. % endfor
15. </%pyfr:kernel>

Fig. 3. Example kernel negdivf written in the PyFR DSL. This
kernel takes the transformed divergence of the flux (tdivf ) as an input
and, using the reciprocal of the determinant of the Jacobian (rcpdj),
computes the negated physical divergence of the flux.

perform a required operation at a single point inside of a
single element. This shields a developer from necessarily
having to understand how data is arranged in memory,
and permits PyFR to use different memory layouts for
different platforms. Secondly, it is possible to utilise
Python when generating the main body of kernels. For
example on line 12 of Fig. 3 we loop over each of the
field variables. Thirdly, the template parameters ndims
and nvars refer to the number of spatial dimensions
and field variables, respectively, in the equations being
solved. It is hence possible to reuse kernels across not
only hardware platforms but also governing systems. Fi-
nally, we observe that two input arguments, t and ploc,
appear to go unused. These correspond to the simulation
time t and the physical location x where the operation is
performed, respectively. They are potentially referenced
by the expressions in ex which contains a list of source
terms to substitute into the kernel body as shown on line
13. During the code generation phase unused arguments
are automatically pruned from function prototypes. For
example, in the kernel of Fig 3, this allows PyFR to
avoid allocating memory for x should the source terms
have no spatial dependency.

E. Plugin Infrastructure

Within PyFR one can define ‘plugins’—written in pure
Python—which can analyse and process solution data at
the end of each time-step. This infrastructure is used to
implement a wide range of capabilities. These include
checkpointing, which is implemented with parallel HDF5
via the h5py wrappers, and a variety of in-situ processing
algorithms such as point data extraction, surface force

TABLE II
MESH ELEMENT COUNTS

Mesh NE

B1S1.760 36,066,250

B2S1.760 72,132,500

B3S1.760 108,198,750

B4S1.760 144,265,000

B5S1.760 180,331,250

B1S0.352 7,213,250

B1S1.056 21,639,750

integration, and time-averaging, which can all be used
to reduce I/O requirements for real-world simulations.
By design, this infrastructure abstracts away underlying
specifics of the backend. It is thus a lightweight and as-
sessable means of adding in-situ processing and analysis
capabilities.

VI. HOW PERFORMANCE WAS MEASURED

A. Test Case

Performance was measured by applying PyFR to solve
for flow over a T106D LPT linear cascade using an ILES
approach. Conditions from Stadtmuller et al. [11][12]
were employed. Specifically, the experimental setup had
five LPT blades exposed to uniform inflow, a span to
chord ratio of h/c = 1.76, a Reynolds number based on
the chord c of Re = 80, 000, and an exit isentropic Mach
number of Ma = 0.4, in addition to other parameters
defined in Fig. 4.

Various unstructured quadratically-curved hexahedral
meshes of all or part of the experimental config-
uration were produced using Gmsh [32], including
meshes B1S1.760, B2S1.760, B3S1.760, B4S1.760, and
B5S1.760 of one, two, three, four and five blades respec-
tively with h/c = 1.76 (100% span), mesh B1S0.352
of one blade with h/c = 0.352 (20% span), and mesh
B1S1.056 of one blade with h/c = 1.056 (60% span).
All meshes had the same isotropic mesh resolution
throughout their respective domains, and were periodic
in the span-wise and pitch-wise directions. The number
of elements NE in each mesh are given in Table II, and a
view of the mesh surrounding one of the blades is shown
in Fig. 5. All runs were started from an initial condition
which was obtained by tessellating the domain with the
result from a smaller-scale simulation of flow over one
blade, with h/c = 0.176 (10% span).

Three types of run were undertaken on a selection
of the meshes, namely ‘scaling’ runs a ‘peak sustained
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Fig. 4. Schematic of the T106D LPT configuration used in this
study. The pitch to chord ratio t/c = 1.05, the stagger angle β2 =
59.28◦ and the inflow angle β1 = 127.7◦. Light grey arrow indicates
direction of inflow.

Fig. 5. Cross-sectional view of the mesh surrounding a single LPT
blade in the T106D cascade. Note the isotropic nature of the mesh.
Each element has a side length of ∼0.0055c.

performance’ run, and a ‘physics’ run. Scaling runs and
the peak sustained performance run were designed to
assess scaling and efficiency of the solver. They had no
plugins enabled (i.e. no I/O or in-situ processing was
performed). The scaling runs used fourth-order solution

polynomials with each element, and the peak sustained
performance run used fifth-order solution polynomials
within each element. After start-up, each run proceeded
for at least 5 time-steps to bypass any transient hardware
or communication behaviour. The total number of time-
steps and current wall-clock time were then reported at
approximately 10 second intervals over a period of at
least 60 time-steps. Combined with prior computation
of DP-FLOPs per time-step, these data were used to
obtain an overall DP-FLOP/s rate for the solver; where
the FLOP count for matrix-multiply kernels between A
and B was estimated as 2nmk, with n the number of
rows in A, m the number of columns in B, and k the
common dimension, and the FLOP count for the point-
wise kernels was estimated by hand counting operations.
We note that the matrix-multiply kernels contributed two
orders-of-magnitude more FLOPs per time-step than the
point-wise kernels. We also note that results were within
0.2% of those computed using data from half the number
time-steps, demonstrating that the reported performance
characteristics were stable.

The physics run was designed to assess the accuracy
of the solver by comparison with available experimental
data [11][12]. It had the time-averaging and checkpoint-
ing plugins enabled, which computed a rolling average
of the pressure field in-situ, and wrote this to disk every
1.0c/

√
RsTt (where Rs is the specific gas constant and

Tt is the total temperature at the inlet), along with a
checkpoint file of the entire solution state. The physics
run used fourth-order solution polynomials within each
element.

All runs used commit 4e2cfb7 to the main PyFR
Github repository (https://github.com/vincentlab/PyFR)
plus print statements for timing purposes. This commit
contains the same functionality as PyFR v1.3.0. All
runs were performed at double precision, solution points
were located as a tensor product of Gauss-Legendre
points within each element, flux points were located
as a tensor of Gauss-Legendre points on each face,
a Rusanov Riemann solver was employed to calculate
common inviscid fluxes between elements, an explicit
RK45[2R+] scheme [33] with a fixed time-step was used
to advance the solution in time, and full anti-aliasing was
employed; of the flux in the volume, the flux on the faces,
and the divergence of the flux in the volume. Full setup
configurations for each run are available on request.

B. Systems

Performance was measured on two NVIDIA GPU
clusters, namely Piz Daint (a Cray XC30 system) at



the Swiss National Supercomputing Centre and Titan
(a Cray XK7 system) at Oak Ridge National Labora-
tory. Both systems are based around the K20X GPU.
However, we note that the Aries interconnect used on
the XC30 has substantially more bandwidth than the
Gemini interconnect of the XK7. In both instances the
CUDA backend of PyFR was used to target the GPUs
on each system, with each MPI rank being assigned to
a single GPU. As PyFR was configured just to target
the GPUs, the majority of the CPU cores on the nodes
remained idle. Although PyFR is capable of running
heterogeneously this comes at the expense of a more
complicated domain decomposition and rank-allocation.
Given the large discrepancy between CPU and GPU DP-
FLOPs it was concluded that the potential benefit from
exploiting the CPU cores in this instance did not justify
the increased complexity of a heterogeneous simulation.
On Piz Daint, Python 3.4.3 and CUDA 6.5.14 were
employed for all runs. On Titan, Python 3.5.1 and CUDA
7.5.18 were employed for all runs.

VII. PERFORMANCE RESULTS

A. Scaling

Scaling runs were undertaken to assess weak and
strong scaling on both Piz Daint and Titan. Specifically,
scaling runs on meshes B1S1.760, B2S1.760, B3S1.760,
B4S1.760, and B5S1.760 were used to assess weak
scaling on both systems, and scaling runs on B1S0.352
and B1S1.056 were used to assess strong scaling on Piz
Daint and Titan respectively.

Weak scaling results for Piz Daint and Titan can be
seen in Tables III and IV, where NGPU is the number of
K20X GPUs and TN is the normalised runtime. Strong
scaling results for Piz Daint and Titan can be seen in
Tables V and VI, where NGPU is the number of K20X
GPUs and SN is the normalised speedup. It is observed
that PyFR achieves excellent weak scaling on both Piz
Daint and Titan, attaining in the vicinity of 50% peak
accelerator DP-FLOP/s. In term of strong scaling, PyFR
achieves an 8.57 fold performance increase on Piz Daint
moving from 200 to 2,000 K20X GPUs for a fixed
problem size. However, beyond this, moving to 4,000
K20X GPUs, parallel efficiency begins to drop. This can
be attributed to the fact that with 4,000 K20X GPUs
memory load is only ∼5%. Similar results are observed
on Titan, with PyFR achieving an 8.41 fold performance
increase moving from 600 to 6,000 K20X GPUs for a
fixed problem size.

TABLE III
WEAK SCALING OF PYFR ON PIZ DAINT

Mesh NGPU DP-PFLOP/s % Peak DP-FLOP/s TN

B1S1.760 1,000 0.67 51.0% 1.00

B2S1.760 2,000 1.33 50.8% 1.00

B3S1.760 3,000 2.00 50.8% 1.00

B4S1.760 4,000 2.65 50.6% 1.01

TABLE IV
WEAK SCALING OF PYFR ON TITAN

Mesh NGPU DP-PFLOP/s % Peak DP-FLOP/s TN

B1S1.760 3,000 1.93 49.2% 1.00

B2S1.760 6,000 3.88 49.3% 1.00

B3S1.760 9,000 5.79 49.2% 1.00

B4S1.760 12,000 7.76 49.3% 1.00

B5S1.760 15,000 9.65 49.1% 1.00

TABLE V
STRONG SCALING OF PYFR ON PIZ DAINT

Mesh NGPU DP-PFLOP/s % Peak DP-FLOP/s SN

B1S0.352 200 0.14 52.0% 1.00

B1S0.352 400 0.27 50.8% 1.95

B1S0.352 1,000 0.64 48.6% 4.67

B1S0.352 2,000 1.17 44.6% 8.57

B1S0.352 4,000 1.99 38.1% 14.64

TABLE VI
STRONG SCALING OF PYFR ON TITAN

Mesh NGPU DP-PFLOP/s % Peak DP-FLOP/s SN

B1S1.056 600 0.40 50.9% 1.00

B1S1.056 1,200 0.79 50.0% 1.97

B1S1.056 3,000 1.87 47.7% 4.69

B1S1.056 6,000 3.36 42.8% 8.41

B. Peak Sustained Performance

The peak sustained performance run was undertaken
with mesh B5S1.760 on 18,000 K20X GPUs of Titan.
The run had 195 billion DOFs, and achieved 13.7 DP-
PFLOP/s (58.0% peak accelerator DP-FLOP/s).

C. Physics

The physics run was undertaken with mesh B5S1.760
on 5,000 K20X GPUs of Titan. It had 113 billion DOFs.
The simulation ran for ∼35 hours, advancing the solution
∼9.0c/

√
RsTt time units. This equates to approximately

2.7 flow passes over the chord of each blade. We note



that writing each pressure average and checkpoint file to
disk took ∼7.0 minutes. There were a total of 9 such
writes, accounting for ∼3.0% of the total run time.

Fig. 6 shows a view of the whole configuration.
Specifically, a snapshot of density gradient magnitude
is shown on two span-normal planes. Flow separation,
and transition to a turbulent wake is apparent. Fig. 7
shows a snapshot of density gradient magnitude in a
plane situated within the wake of a single blade. Fig. 8
shows a snapshot of Q-criteria isosurfaces, which defines
vortical structures, coloured by velocity magnitude in the
wake of a single blade. The high span-wise resolution
of the simulation is apparent. Flow structures can be
seen to decay as they are advected downstream. Finally,
Fig. 9 shows a plot of time-averaged isentropic Mach
number on the pressure and suction surfaces at the
centre-span of a single LPT blade, along with associated
experimental data [11]. We note that PyFR achieves very
good agreement with the experimental data.

VIII. IMPLICATIONS

A. High Performance Computing with Python

We have demonstrated the utility of Python as a
language for the implementation of accelerated HPC
codes that can run at petascale. Future use of Python
could reduce development time and ongoing mainte-
nance burden of next-generation HPC software, whilst
increasing flexibility and extensibility.

B. Performance Portability and Runtime Code Genera-
tion

We have demonstrated the utility of runtime code
generation for HPC at petascale. Wider adoption of
the paradigms showcased in this work could lead to
decreased maintenance burden for cross-platform im-
plementations, and more efficient targeting of heteroge-
neous systems, which are becoming increasingly preva-
lent.

C. Computational Fluid Dynamics on Next-Generation
Systems

We have demonstrated how, via an appropriate choice
of numerical method, the arithmetic capabilities of mod-
ern hardware platforms can be effectively harnessed for
CFD simulations on unstructured meshes. Even with
advances such as high bandwidth memory, it is likely that
the FLOPs-to-byte ratio of next-generation systems—
such as Summit and Sierra—will be similar to that of
current systems. As such this achievement will be of
ongoing relevance.

Fig. 6. Snapshot of density gradient magnitude on two span-normal
planes at 9.0c/

√
RsTt time units.

Fig. 7. Snapshot of density gradient magnitude in a plane situated
within the wake of a single blade at 9.0c/

√
RsTt time units. Flow

is from top-to-bottom, the span-wise direction is from left-to-right.



Fig. 8. Snapshot of iso-surfaces of Q-criteria coloured by velocity magnitude in the wake of a single blade at 9.0c/
√
RsTt time units.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

x/a

Is
en

tr
op

ic
M

ac
h

N
um

be
r

Fig. 9. Time-averaged isentropic Mach number distribution over the
pressure and suction surfaces of a single blade measured at mid-
span obtained from the PyFR simulation (black dots), and associated
experimental data [11] (grey crosses). The PyFR data was obtained
by averaging over 9.0c/

√
RsTt time units.

D. Design of Low-Pressure Turbine Blades and Green
Aviation

We have demonstrated the ability of PyFR to perform
ILES of an entire highly-loaded LPT cascade using
an isotropic mesh, at what we believe to be an un-
precedented scale. The simulations achieved very good
agreement with isentropic Mach number distributions
obtained from experiments. Going forwards, we believe
similar simulations could be used to underpin a full-
scale virtual LPT cascade capability, that is able to fully
resolve inlet turbulence, including injected wakes from
preceding blade rows, as well as the effect of side walls,
and other complex three-dimensional features. Such a
capability would alleviate current reliance on expensive
experimental campaigns for LPT design. Additionally,
data generated from such a capability would be more de-
tailed than that currently available from experiments, and

could be used to refine and improve existing RANS/LES
turbulence models, increasing their utility in the LPT
design cycle. In summary, this capability could revolu-
tionise the design of LPT configurations; maximising
aerodynamic efficiency, reducing total engine weight,
and thus lowering aircraft GHG emissions.

In addition to LPT design, the technology in PyFR
could underpin solutions to a range of outstanding
green aviation challenges, including development of op-
timised high-pressure turbines, fans, compressors, high-
lift configurations, as well as optimisation of landing
gear acoustics, cavity acoustics, and active and passive
flow control devices. The ability to use ILES/DNS as
a design tool will allow engineers to move beyond the
limitations of RANS, and enable the step-changes in
design that are required to meet the targets of the Clean
Sky and ERA projects. Such advances are essential for
the sustainability of commercial aviation in the coming
decades.
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