6 research outputs found

    The potential use of mapped extent and distribution of habitats as indicators of Good Environmental Status (GES)

    Get PDF
    The Healthy and Biologically Diverse Seas Evidence Group (HBDSEG) has been tasked with providing the technical advice for the implementation of the Marine Strategy Framework Directive (MSFD) with respect to descriptors linked to biodiversity. A workshop was held in London to address one of the Research and Development (R&D) proposals entitled: ‘Mapping the extent and distribution of habitats using acoustic and remote techniques, relevant to indicators for area/extent/habitat loss.’ The aim of the workshop was to identify, define and assess the feasibility of potential indicators of benthic habitat distribution and extent, and identify the R&D work which could be required to fully develop these indicators. The main points that came out of the workshop were: (i) There are many technical aspects of marine habitat mapping that still need to be resolved if cost-effective spatial indicators are to be developed. Many of the technical aspects that need addressing surround issues of consistency, confidence and repeatability. These areas should be tackled by the JNCC Habitat Mapping and Classification Working Group and the HBDSEG Seabed Mapping Working Group. (ii) There is a need for benthic ecologists (through the HBDSEG Benthic Habitats Subgroup and the JNCC Marine Indicators Group) to finalise the list of habitats for which extent and/or distribution indicators should be considered for development, building upon the recommendations from this report. When reviewing the list of indicators, benthic habitats could also be distinguished into those habitats that are defined/determined primarily by physical parameters (although including biological assemblages) (e.g. subtidal shallow sand) and those defined primarily by their biological assemblage (e.g. seagrass beds). This distinction is important as some anthropogenic pressures may influence the biological component of the ecosystem despite not having a quantifiable effect on the physical habitat distribution/extent. (iii) The scale and variety of UK benthic habitats makes any attempt to undertake comprehensive direct mapping exercises prohibitively expensive (especially where there is a need for repeat surveys for assessment). There is a clear need therefore to develop a risk-based approach that uses indirect indicators (e.g. modelling), such as habitats at risk from pressures caused by current human activities, to develop priorities for information gathering. The next steps that came out of the workshop were: (i) A combined approach should be developed by the JNCC Marine Indicators Group together with the HBDSEG Benthic Habitats Subgroup, which will compile and ultimately synthesise all the criteria used by the three different groups from the workshop. The agreed combined approach will be used to undertake a final review of the habitats considered during the workshop, and to evaluate any remaining habitats in order to produce a list of habitats for indicator development for which extent and/or distribution indicators could be appropriate. (ii) The points of advice raised at this workshop, alongside the combined approach aforementioned, and the final list of habitats for extent and/or distribution indicator development will be used to develop a prioritised list of actions to inform the next round of R&D proposals for benthic habitat indicator development in 2014. This will be done through technical discussions within JNCC and the relevant HBDSEG Subgroups. The preparation of recommendations by these groups should take into account existing work programmes, and consider the limited resources available to undertake any further R&D work

    A regional benthic fauna assessment method for the Southern North Sea using Margalef diversity and reference value modelling

    Get PDF
    The aims of this study are to develop an optimized method for regional benthic fauna assessment of the Southern North Sea which (a) is sensitive and precise (quantified as the slope and the R2 value of the pressure-impact relationships, respectively) for the anthropogenic pressures bottom fishing and organic enrichment, (b) is suitable for estimating and modelling reference values, (c) is transparent, (d) can be efficiently applied using dedicated software; and to apply this method to benthic data from the Southern North Sea. Margalef diversity appeared to be the best performing benthic index regarding these criteria, even better than several Multi-Metric Indices (MMIs) containing e.g. AMBI (AZTI Marine Biotic Index) and ITI (Infaunal Trophic Index). Therefore, this relatively simple and very practical index, including a new reference value estimation and modelling method, and BENMMI software were selected as a common OSPAR (Oslo Paris convention) method for the benthic fauna assessment of the Southern North Sea. This method was applied to benthic fauna data from the Southern North Sea collected during the period 2010–2015. The results in general show lower normalized Margalef values in coastal areas, and higher normalized Margalef values in deeper offshore areas. The following benthic indices were compared in this study: species richness, Margalef diversity, SNA index, Shannon index, PIE index, AMBI, ITI. For each assessment area, the least disturbed benthic dataset was selected as an adjacent 6 year period with, on average, the highest Margalef diversity values. For these datasets, the reference values were primarily set as the 99th percentile values of the respective indices. This procedure results in the highest stable reference values that are not outliers. In addition, a variable percentile method was developed, in which the percentile value is adjusted to the average bottom fishing pressure (according to data from the International Council for the Exploration of the Sea, ICES) in the period 2009–2013. The adjusted percentile values were set by expert judgement, at 75th (low fishing pressure), 95th (medium fishing pressure) and 99th (high fishing pressure) percentile. The estimated reference values for Margalef diversity correlate quite well with the median depth of the assessment areas using a sigmoid model (pseudo-R2 = 0.86). This relationship between depth and Margalef diversity was used to estimate reference values in case an assessment area had insufficient benthic data .For testing the effects of bottom fishing pressure, normalized index values (NIV; index value divided by reference value) were used. The rationale for using NIVs is the assumption that, although a certain level of bottom fishing pressure will have a larger absolute effect on more biodiverse benthic communities in deeper waters than on more robust and less biodiverse coastal benthic communities, the relative effects (tested using NIVs) are comparable. A clear exponentially decreasing relationship (R2 = 0.26–0.27, p 2 cm, respectively) and normalized Margalef diversity values, with an asymptotic normalized Margalef value of 0.45 at a subsurface fishing activity >2.3 sweeps/year. This asymptotic value is predominantly found in coastal waters, and probably shows that the naturally more robust coastal benthic communities have been transformed into resilient benthic communities, which rapidly recover from increasing fishing pressure

    Assessing the state of marine biodiversity in the Northeast Atlantic

    Get PDF
    The Northeast Atlantic, a highly productive maritime area, has been exposed to a wide range of direct human pressures, such as fishing, shipping, coastal development, pollution, and non-indigenous species (NIS) introductions, in addition to anthropogenically-driven global climate change. Nonetheless, this regional sea supports a high diversity of species and habitats, whose functioning provides a variety of ecosystem services, essential for human welfare. In 2017, OSPAR, the Northeast Atlantic Regional Seas Commission, delivered an assessment of marine biodiversity for the Northeast Atlantic. This assessment examined biodiversity indicators separately to identify changes in Northeast Atlantic biodiversity, but stopped short of determining the status of biodiversity for many species and habitats. Here, we expand on this work and for the first time, a semi-quantitative approach is applied to evaluate holistically the state of Northeast Atlantic marine biodiversity across marine food webs, from plankton to top predators, via fish, pelagic and benthic habitats, including xeno-biodiversity (i.e. NIS). Our analysis reveals widespread degradation in marine ecosystems and biodiversity, particularly for marine birds and coastal bottlenose dolphins, as well as for benthic habitats and fish in some regions. The poor biodiversity status of these ecosystem components is likely the result of cumulative effects of human activities, such as habitat destruction or disturbance, overexploitation, eutrophication, the introduction of NIS, and climate change. Bright spots are also revealed, such as recent signs of recovery in some fish and marine bird communities and recovery in harbour and grey seal populations and the condition of coastal benthic communities in some regions. The status of many indicators across all ecosystem components, but particularly for the novel pelagic habitats, food webs and NIS indicators, however, remains uncertain due to gaps in data, unclear pressure-state relationships, and the non-linear influence of some pressures on biodiversity indicators. Improving monitoring and data access and increasing understanding of pressure-state relationships, including those that are non-linear, is therefore a priority for enabling future assessments, as is consistent and stable resourcing for expert involvement

    Proposed approaches for indicator integration. EcApRHA Deliverable WP 4.1

    No full text
    Executive SummaryThe Marine Strategy Framework Directive (MSFD) aims to achieve Good Environmental Status (GES) withinEuropean Commission waters through an ecosystem‐based approach. The MSFD requires Member Statessharing a marine region or sub‐region to cooperate to ensure that the Directive’s objectives are achievedWorking towards an ecosystem perspective: Proposals for the integration of pelagic, benthic and food web indicatorsand to coordinate their actions through Regional Seas Conventions e.g. the OSPAR Commission for theNorth‐East Atlantic. As part of the ‘applying an Ecosystem Approach to (sub) Regional Habitat Assessments’(EcApRHA) project, integration of indicators under Descriptor 1 (biodiversity), 4 (food webs) and 6 (seafloorintegrity), relating to pelagic and benthic habitats and food webs have been forwarded to work towards anecosystem’s approach in assessing habitats regionally. The content of this report covers differentapproaches developed to integrate indicators forwarded within the project.Five methods are described, four of which were developed to integrate indicators developed under theEcApRHA project. The fifth, OSPAR’s cumulative effect approach has also been summarised as an additionalapproach to integrate indicators. For each method, management implications; the advantages anddisadvantages in relation to being able to work toward assessment of GES; and the confidence in theassessments, are highlighted. The time it would take for the approach to become fully operational, itsfeasibility and costs are also discussed.From the five methods described, three main approaches are discussed:I. A quantitative method to draw links between indicators to assess pressures that have effectson the different aspects of the marine ecosystem (Chapters 3‐4).II. Use of the Nested Environmental status Assessment Tool (NEAT) to integrate differentindicators to provide an overall assessment (Chapters 5 and 6).III. Use of an industry led risk assessment tool (Bow‐Ties) to assess cumulative effects (Chapter 7).The integration approaches outlined within this document demonstrate the developments made within theEcApRHA project to ensure the various indicators under the different descriptors are not only operational,but also integrated in a way which permits a more holistic assessment of the marine environment. Usingsuch a two‐tiered approach of individual indicator and integrated analysis, will enable an understanding ofwhy certain aspects of the marine environment may not be in good condition, and thereby recommendspecific management measures to ameliorate them. Although the approaches forwarded have been initiallytrialled in the North‐East Atlantic, they are able to be applied to other MSFD Regional seas areas. Eachmethod addresses different levels of integration (indicator, habitat or ecosystem) and requires furtherdevelopment and testing. They should be thus considered as complementary and gaps should beprogressed in parallel to ensure coherent progress towards an overall ecosystem approach. In addition,with some further comparative testing between the different methods outlined within this document,options to continue forwarding integrated assessment of OSPAR indicators could be proposed. Themethods outlined within this document are a first step in applying an ecosystem’s approach to assessingthe state of our seas
    corecore