304 research outputs found

    Climate change: challenges and opportunities for global health.

    Get PDF
    IMPORTANCE: Health is inextricably linked to climate change. It is important for clinicians to understand this relationship in order to discuss associated health risks with their patients and to inform public policy. OBJECTIVES: To provide new US-based temperature projections from downscaled climate modeling and to review recent studies on health risks related to climate change and the cobenefits of efforts to mitigate greenhouse gas emissions. DATA SOURCES, STUDY SELECTION, AND DATA SYNTHESIS: We searched PubMed and Google Scholar from 2009 to 2014 for articles related to climate change and health, focused on governmental reports, predictive models, and empirical epidemiological studies. Of the more than 250 abstracts reviewed, 56 articles were selected. In addition, we analyzed climate data averaged over 13 climate models and based future projections on downscaled probability distributions of the daily maximum temperature for 2046-2065. We also compared maximum daily 8-hour average ozone with air temperature data taken from the National Oceanic and Atmospheric Administration, National Climate Data Center. RESULTS: By 2050, many US cities may experience more frequent extreme heat days. For example, New York and Milwaukee may have 3 times their current average number of days hotter than 32°C (90°F). High temperatures are also strongly associated with ozone exceedance days, for example, in Chicago, Illinois. The adverse health aspects related to climate change may include heat-related disorders, such as heat stress and economic consequences of reduced work capacity; respiratory disorders, including those exacerbated by air pollution and aeroallergens, such as asthma; infectious diseases, including vectorborne diseases and waterborne diseases, such as childhood gastrointestinal diseases; food insecurity, including reduced crop yields and an increase in plant diseases; and mental health disorders, such as posttraumatic stress disorder and depression, that are associated with natural disasters. Substantial health and economic cobenefits could be associated with reductions in fossil fuel combustion. For example, greenhouse gas emission policies may yield net economic benefit, with health benefits from air quality improvements potentially offsetting the cost of US and international carbon policies. CONCLUSIONS AND RELEVANCE: Evidence over the past 20 years indicates that climate change can be associated with adverse health outcomes. Health care professionals have an important role in understanding and communicating the related potential health concerns and the cobenefits from policies to reduce greenhouse gas emissions

    Large Fugitive Methane Emissions From Urban Centers Along the U.S. East Coast

    Full text link
    Urban emissions remain an underexamined part of the methane budget. Here we present and interpret aircraft observations of six old and leak‐prone major cities along the East Coast of the United States. We use direct observations of methane (CH4), carbon dioxide (CO2), carbon monoxide (CO), ethane (C2H6), and their correlations to quantify CH4 emissions and attribute to natural gas. We find the five largest cities emit 0.85 (0.63, 1.12) Tg CH4/year, of which 0.75 (0.49, 1.10) Tg CH4/year is attributed to natural gas. Our estimates, which include all thermogenic methane sources including end use, are more than twice that reported in the most recent gridded EPA inventory, which does not include end‐use emissions. These results highlight that current urban inventory estimates of natural gas emissions are substantially low, either due to underestimates of leakage, lack of inclusion of end‐use emissions, or some combination thereof.Plain Language SummaryRecent efforts to quantify fugitive methane associated with the oil and gas sector, with a particular focus on production, have resulted in significant revisions upward of emission estimates. In comparison, however, there has been limited focus on urban methane emissions. Given the volume of gas distributed and used in cities, urban losses can impact national‐level emissions. In this study we use aircraft observations of methane, carbon dioxide, carbon monoxide, and ethane to determine characteristic correlation slopes, enabling quantification of urban methane emissions and attribution to natural gas. We sample nearly 12% of the U.S. population and 4 of the 10 most populous cities, focusing on older, leak‐prone urban centers. Emission estimates are more than twice the total in the U.S. EPA inventory for these regions and are predominantly attributed to fugitive natural gas losses. Current estimates for methane emissions from the natural gas supply chain appear to require revision upward, in part possibly by including end‐use emissions, to account for these urban losses.Key PointsAircraft observations downwind of six major cities along the U.S. East Coast are used to estimate urban methane emissionsObserved urban methane estimates are about twice that reported in the Gridded EPA inventoryMethane emissions from natural gas (including end use) in five cities combined exceeds nationwide emissions estimate from local distributionPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151283/1/grl59329.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151283/2/grl59329_am.pd

    ENSO and Pacific decadal variability in the Community Climate System Model Version 4

    Get PDF
    Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 25 (2012): 2622–2651, doi:10.1175/JCLI-D-11-00301.1.This study presents an overview of the El Niño–Southern Oscillation (ENSO) phenomenon and Pacific decadal variability (PDV) simulated in a multicentury preindustrial control integration of the NCAR Community Climate System Model version 4 (CCSM4) at nominal 1° latitude–longitude resolution. Several aspects of ENSO are improved in CCSM4 compared to its predecessor CCSM3, including the lengthened period (3–6 yr), the larger range of amplitude and frequency of events, and the longer duration of La Niña compared to El Niño. However, the overall magnitude of ENSO in CCSM4 is overestimated by ~30%. The simulated ENSO exhibits characteristics consistent with the delayed/recharge oscillator paradigm, including correspondence between the lengthened period and increased latitudinal width of the anomalous equatorial zonal wind stress. Global seasonal atmospheric teleconnections with accompanying impacts on precipitation and temperature are generally well simulated, although the wintertime deepening of the Aleutian low erroneously persists into spring. The vertical structure of the upper-ocean temperature response to ENSO in the north and south Pacific displays a realistic seasonal evolution, with notable asymmetries between warm and cold events. The model shows evidence of atmospheric circulation precursors over the North Pacific associated with the “seasonal footprinting mechanism,” similar to observations. Simulated PDV exhibits a significant spectral peak around 15 yr, with generally realistic spatial pattern and magnitude. However, PDV linkages between the tropics and extratropics are weaker than observed.M. Alexander, A. Capotondi, and J. Scott’s participation was supported by a grant from the NSF Climate and Large-scale Dynamics Program. Y.-O. Kwon gratefully acknowledges support from a WHOI Heyman fellowship and a grant from the NSF Climate and Largescale Dynamics Program. The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy.2012-10-1

    A serious game enhancing social tenants' behavioral change towards energy efficiency

    Get PDF
    The energy consumption of the current building stock represents about 40% of the total final energy consumption in Europe. New gamification techniques may play a significant role in helping users adopt new and more energy efficient behaviours. This paper presents the advances achieved within the context of the EU-funded project EnerGAware - Energy Game for Awareness of energy efficiency in social housing communities. The main objective of the project, funded by the European Union under the Horizon2020 programme, is to reduce the energy consumption and carbon emissions in a sample of European social housing by changing the energy efficiency behaviour of the social tenants through the implementation of a serious game linked to the real energy use of the participants' homes

    Characterizing unforced multi-decadal variability of ENSO:a case study with the GFDL CM2.1 coupled GCM

    Get PDF
    Large multi-decadal fluctuations of El Niño-Southern Oscillation (ENSO) variability simulated in a 4000-year pre-industrial control run of GFDL CM2.1 have received considerable attention due to implications for constraining the causes of past and future changes in ENSO. We evaluated the mechanisms of this low-frequency ENSO modulation through analysis of the extreme epochs of CM2.1 as well as through the use of a linearized intermediate-complexity model of the tropical Pacific, which produces reasonable emulations of observed ENSO variability. We demonstrate that the low-frequency ENSO modulation can be represented by the simplest model of a linear, stationary process, even in the highly nonlinear CM2.1. These results indicate that CM2.1’s ENSO modulation is driven by transient processes that operate at interannual or shorter time scales. Nonlinearities and/or multiplicative noise in CM2.1 likely exaggerate the ENSO modulation by contributing to the overly active ENSO variability. In contrast, simulations with the linear model suggest that intrinsically-generated tropical Pacific decadal mean state changes do not contribute to the extreme-ENSO epochs in CM2.1. Rather, these decadal mean state changes actually serve to damp the intrinsically-generated ENSO modulation, primarily by stabilizing the ENSO mode during strong-ENSO epochs. Like most coupled General Circulation Models, CM2.1 suffers from large biases in its ENSO simulation, including ENSO variance that is nearly twice that seen in the last 50 years of observations. We find that CM2.1’s overly strong ENSO variance directly contributes to its strong multi-decadal modulation through broadening the distribution of epochal variance, which increases like the square of the long-term variance. These results suggest that the true spectrum of unforced ENSO modulation is likely substantially narrower than that in CM2.1. However, relative changes in ENSO modulation are similar between CM2.1, the linear model tuned to CM2.1, and the linear model tuned to observations, underscoring previous findings that relative changes in ENSO variance can robustly be compared across models and observations

    A renewed rise in global HCFC-141b emissions between 2017???2021

    Get PDF
    Global emissions of the ozone-depleting gas HCFC-141b (1,1-dichloro-1-fluoroethane, CH3CCl2F) derived from measurements of atmospheric mole fractions increased between 2017 and 2021 despite a fall in reported production and consumption of HCFC-141b for dispersive uses. HCFC-141b is a controlled substance under the Montreal Protocol, and its phase-out is currently underway, after a peak in reported consumption and production in developing (Article 5) countries in 2013. If reported production and consumption are correct, our study suggests that the 2017–2021 rise is due to an increase in emissions from the bank when appliances containing HCFC-141b reach the end of their life, or from production of HCFC-141b not reported for dispersive uses. Regional emissions have been estimated between 2017–2020 for all regions where measurements have sufficient sensitivity to emissions. This includes the regions of northwestern Europe, east Asia, the United States and Australia, where emissions decreased by a total of 2.3 ± 4.6 Gg yr−1, compared to a mean global increase of 3.0 ± 1.2 Gg yr−1 over the same period. Collectively these regions only account for around 30 % of global emissions in 2020. We are not able to pinpoint the source regions or specific activities responsible for the recent global emission rise

    Modes and Mechanisms of Pacific Decadal-Scale Variability

    Get PDF
    The modes of Pacific decadal-scale variability (PDV), traditionally defined as statistical patterns of variance, reflect to first order the ocean's integration (i.e., reddening) of atmospheric forcing that arises from both a shift and a change in strength of the climatological (time-mean) atmospheric circulation. While these patterns concisely describe PDV, they do not distinguish among the key dynamical processes driving the evolution of PDV anomalies, including atmospheric and ocean teleconnections and coupled feedbacks with similar spatial structures that operate on different timescales. In this review, we synthesize past analysis using an empirical dynamical model constructed from monthly ocean surface anomalies drawn from several reanalysis products, showing that the PDV modes of variance result from two fundamental low-frequency dynamical eigenmodes: the North Pacific-central Pacific (NP-CP) and Kuroshio-Oyashio Extension (KOE) modes. Both eigenmodes highlight how two-way tropical-extratropical teleconnection dynamics are the primary mechanisms energizing and synchronizing the basin-scale footprint of PDV. While the NP-CP mode captures interannual- to decadal-scale variability, the KOE mode is linked to the basin-scale expression of PDV on decadal to multidecadal timescales, including contributions from the South Pacific. Expected final online publication date for the Annual Review of Marine Science, Volume 15 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates

    ChIP-seq and RNA-seq for complex and low-abundance tree buds reveal chromatin and expression co-dynamics during sweet cherry bud dormancy

    Get PDF
    Funder: CIFREAbstract: Chromatin immunoprecipitation-sequencing (ChIP-seq) is a robust technique to study interactions between proteins, such as histones or transcription factors and DNA. This technique in combination with RNA-sequencing (RNA-seq) is a powerful tool to better understand biological processes in eukaryotes. We developed a combined ChIP-seq and RNA-seq protocol for tree buds (Prunus avium L., Prunus persica L Batch, Malus x domestica Borkh.) that has also been successfully tested on Arabidopsis thaliana and Saccharomyces cerevisiae. Tree buds contain phenolic compounds that negatively interfere with ChIP and RNA extraction. In addition to solving this problem, our protocol is optimised to work on small amounts of material. Furthermore, one of the advantages of this protocol is that samples for ChIP-seq are cross-linked after flash freezing, making it possible to work on trees growing in the field and to perform ChIP-seq and RNA-seq on the same starting material. Focusing on dormant buds in sweet cherry, we explored the link between expression level and H3K4me3 enrichment for all genes, including a strong correlation between H3K4me3 enrichment at the DORMANCY-ASSOCIATED MADS-BOX 5 (PavDAM5) loci and its expression pattern. This protocol will allow analysis of chromatin and transcriptomic dynamics in tree buds, notably during its development and response to the environment
    corecore