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ABSTRACT 29	
  
 30	
  
Large multi-decadal fluctuations of El Nino-Southern Oscillation (ENSO) variability simulated in a 4,000-31	
  
year pre-industrial control run of GFDL CM2.1 have received considerable attention due to implications for 32	
  
constraining the causes of past and future changes in ENSO. We evaluated the mechanisms of this low-33	
  
frequency ENSO modulation through analysis of the extreme epochs of CM2.1 as well as through the use 34	
  
of a linearized intermediate-complexity model of the tropical Pacific, which produces reasonable 35	
  
emulations of observed ENSO variability. We demonstrate that the low-frequency ENSO modulation can 36	
  
be represented by the simplest model of a linear, stationary process, even in the highly nonlinear CM2.1. 37	
  
These results indicate that CM2.  at time 38	
  
scales that are interannual or shorter. Nonlinearities and/or multiplicative noise in CM2.1 likely exaggerate 39	
  
the ENSO modulation by contributing to the overly active ENSO variability. In contrast, simulations with 40	
  
the linear model demonstrate that intrinsically-generated tropical Pacific decadal mean state changes do not 41	
  
contribute to the extreme-ENSO epochs in CM2.1. Rather, these decadal mean state changes actually serve 42	
  
to damp the intrinsically-generated ENSO modulation, primarily by stabilizing the ENSO mode during 43	
  
strong-ENSO epochs. Like most coupled General Circulation Models, CM2.1 suffers from large biases in 44	
  
its ENSO simulation, including ENSO variance that is nearly twice that seen in the last 50 years of 45	
  
observations. We find that -46	
  
decadal modulation through broadening the distribution of epochal variance, which increases like the 47	
  
square of the long-term variance. These results suggest that the true spectrum of unforced ENSO 48	
  
modulation is likely substantially narrower than that in CM2.1. However, relative changes in ENSO 49	
  
modulation are similar between CM2.1, the linear model tuned to CM2.1, and the linear model tuned to 50	
  
observations, underscoring previous findings that relative changes in ENSO variance can robustly be 51	
  
compared across models and observations. 52	
  
 53	
  
Keywords: ENSO; multi-decadal variability; GFDL CM2.1; linearized model; nonlinear feedbacks 54	
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1. Introduction 55	
  
 56	
  

The decadal- and longer-scale modulation of ENSO is a critical element of past and future climate 57	
  
variations, yet it is poorly constrained by the short observational record (Capotondi et al., 2015; 58	
  
Wittenberg, 2015). ENSO variability is thought to have exhibited large changes over the Holocene (Cobb et 59	
  
al., 2013; Koutavas et al., 2006; McGregor et al., 2013; Tudhope et al., 2001), however it is not yet known 60	
  
to what extent these variations are forced, versus inherent to a noisy coupled ocean-atmosphere system. 61	
  
This uncertainty arises in part from poor observational constraints on the unforced intrinsic component of 62	
  
ENSO modulation on multi-decadal and longer timescales. 63	
  
 Given the short observational record of tropical Pacific climate variability, long unforced 64	
  
simulations of the climate system with fully coupled General Circulation Models (GCMs) are helpful for 65	
  
investigating ENSO variability on decadal and longer timescales (Russon et al., 2014; Wittenberg, 2009). A 66	
  
4,000 year-long pre-industrial control run of GFDL CM2.1 (Delworth et al., 2006; Wittenberg et al., 2006) 67	
  
has been shown to exhibit strong, unforced, largely unpredictable, multi-decadal changes in ENSO 68	
  
variability (Karamperidou et al., 2014; Kug et al., 2010; Wittenberg, 2009; Wittenberg et al., 2014), which 69	
  
also influence the background climatological state of the tropical Pacific (Ogata et al., 2013). These large 70	
  
low-frequency ENSO modulations suggest that in order to detect a forced change in ENSO variability (e.g. 71	
  
from paleoclimate proxies or observations), long records are needed. 72	
  

However, large ENSO biases prevalent in GCMs obscure the real-world relevance of the tropical 73	
  
climate variability obtained from GCM simulations (Guilyardi, in press). GCMs used in the Fourth and 74	
  
Fifth Assessment Reports of the Intergovernmental Panel on Climate Change exhibit a wide range of biases 75	
  
in their representation of ENSO variability, including biases in the amplitude of variance, spatial pattern of 76	
  
SST variability, distribution of ENSO SST anomalies, and seasonal synchronization of ENSO (An and 77	
  
Wang, 2000; Bellenger et al., 2014; Capotondi et al., 2015; Graham et al., 2016; Guilyardi et al., 2012a; 78	
  
Guilyardi et al., 2012b; Guilyardi et al., 2009), which has resulted in little agreement on how ENSO is 79	
  
likely to change in the future (Cai et al., 2014; Chen et al., 2016; Collins et al., 2010; DiNezio et al., 2012; 80	
  
Taschetto et al., 2014; Watanabe et al., 2012). The sources of these ENSO biases are largely unknown, but 81	
  
likely result partly from mean state biases in the models. In this study, we investigate the sources of the 82	
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low-frequency ENSO modulation by performing further analyses of ENSO in the CM2.1 control run, 83	
  
observations, and that simulated by a linearized intermediate model of the tropical Pacific. Through this 84	
  
process, we evaluate the influence of the overly active interannual variability in CM2.1 on the interdecadal 85	
  
modulation of ENSO in an effort to improve constraints on the true spectral characteristics of ENSO in 86	
  
nature.  87	
  

Because the CM2.1 control simulation is unforced, there are essentially four, non mutually 88	
  
exclusive, mechanisms that could cause the large multi-decadal ENSO variability: (1) low frequency 89	
  
changes in the tropical Pacific mean state, which alter the stability of the ENSO system; (2) low frequency 90	
  
changes in stochastic (weather) processes that influence ENSO; (3) random sampling from a stationary, 91	
  
linear process; and (4) nonlinear dynamics, including multiplicative noise, in the ENSO system that spreads 92	
  
variance over a range of time scales. Using the linear model, we show that linear dynamics acting in 93	
  
response to low frequency changes in the tropical Pacific mean state are not the source of low-frequency 94	
  
ENSO modulation in CM2.1. While the influence of low frequency changes in stochastic noise is difficult 95	
  
to address using the suite of tools employed in this analysis, we demonstrate using the linear model runs, 96	
  
CM2.1, and observations that random variations associated with a stationary, linear process are important. 97	
  
Our analyses lead us to conclude that the nonlinearities are also inextricably linked to the multi-decadal 98	
  
ENSO modulation in CM2.1, and while they do not dramatically broaden the distribution of variance as 99	
  
compared to a linear system with equal (i.e. overly active) ENSO variability, they likely shape the 100	
  
distribution of absolute ENSO modulation by contributing to the overly active ENSO variability. 101	
  
 102	
  
2. Description of the linearized model  103	
  
 104	
  

The Linearized Ocean Atmosphere Model (LOAM; Thompson and Battisti, 2000) is a linearized 105	
  
variant of the (Zebiak and Cane, 1987) intermediate complexity model of the tropical Pacific, updated to 106	
  
include observationally constrained parameter values and observed climatological mean state fields, 107	
  
including ocean currents and vertical thermal structure (Thompson, 1998; Roberts, 2007). LOAM is 108	
  
constructed as an anomaly model, such that it calculates the anomalies of its state variables about a set of 109	
  
prescribed mean states. These mean state variables determine the details of the behavior of ENSO in the 110	
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model. Because the mean states are explicitly prescribed in the model, it is an ideal tool to investigate how 111	
  
changes in these mean states can alter the behavior of ENSO. Indeed it has been shown (Roberts and 112	
  
Battisti, 2011; Roberts et al., 2014) that relatively small changes in the mean states can result in relatively 113	
  
large changes in the behavior of ENSO.  The set of seasonally varying mean fields required by LOAM are 114	
  
the SST, near-surface winds, vertical structure of ocean temperature along the equator, upper ocean 115	
  
currents and upwelling. To understand what can cause a change in the behavior of ENSO between two 116	
  
climate states it is possible to use individual mean states from either climate to isolate, for example, the 117	
  
impact of changing the mean wind. The governing equations in LOAM are provided in the Supplementary 118	
  
Material (S.1), along with a summary of the constants and tuning parameters used in LOAM (Table S1; 119	
  
Fig. S1). 120	
  

Briefly, LOAM is comprised of a 1.5-layer ocean model and a two-layer atmosphere model in 121	
  
which heating is a function of SST and surface wind convergence (Gill, 1980). The atmosphere is linear, 122	
  
and modeled as a single baroclinic mode on an equatorial -plane, with mechanical and thermodynamic 123	
  
damping. In contrast to the (Zebiak and Cane, 1987) model and the (Battisti, 1988) model, the atmospheric 124	
  
convergence feedback has been linearized as in (Battisti and Hirst, 1989). The ocean model consists of an 125	
  
active upper layer, governed by the linear shallow water equations on an equatorial -plane, and a 126	
  
motionless lower layer. A 50 m deep Ekman layer, assumed to be in steady state with the surface winds, is 127	
  
embedded in the active upper layer. The linearized prognostic equation for sea surface temperature (SST) 128	
  
includes three-dimensional advection of temperature anomalies by the climatological currents, anomalous 129	
  
advection of the climatological temperature, vertical mixing, and a simple parameterization of the surface 130	
  
heat flux (Roberts and Battisti, 2011; Thompson, 1998b). The dependent variables for the ocean are: 131	
  
meridional and zonal current, thermocline depth, and SST perturbations. The ocean equations are spectrally 132	
  
discretized in the meridional direction by projecting them onto Rossby wave space, and discretized in the 133	
  
zonal direction using finite differences. The atmosphere and SST equations are projected onto Hermite 134	
  
functions in the meridional direction, and are discretized in the zonal direction using finite differences.  135	
  

There are three parameters in LOAM that must be tuned using observations or model output, 136	
  
which represent processes not resolved by the idealized model. These three tuning coefficients (one in the 137	
  
atmosphere, two in the ocean) are described in the Supplementary Material. They are tuned independently 138	
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for the LOAM simulations with observed mean states and with CM2.1 mean states, as these two systems 139	
  
are fundamentally different. However, the tuning parameters are held constant for all subsequent LOAM 140	
  
experiments using the various CM2.1 mean states. In effect, we assume that these coefficients represent a 141	
  
specific dynamical configuration of the system that is independent of the mean state changes across CM2.1 142	
  
epochs. In this way, any changes in ENSO in the linearized model are due solely to changes in the mean 143	
  
state fields and not to the tuning parameters. 144	
  

Given a prescribed set of seasonally varying climatological mean fields (SST, near-surface winds, 145	
  
vertical structure of ocean temperature along the equator, upper ocean currents and upwelling), LOAM 146	
  
simulates the anomalies about the mean state. The underlying assumption in LOAM is that the dynamics of 147	
  
the coupled system in the tropical Pacific are described by linear physics. The coupled atmosphere-ocean 148	
  
variability in the tropical Pacific can then be characterized in terms of the stability, growth rate and 149	
  
frequency of the system's Floquet modes (eigenmodes of the cyclo-stationary annual propagator matrix). 150	
  
Because the eigenmodes of the coupled system are damped, the model is stochastically forced (as white 151	
  
noise in space and time applied to the SST field). Thompson and Battisti (2001) and (Roberts and Battisti, 152	
  
2011) demonstrated that LOAM with observed background states supports a leading mode of the coupled 153	
  
system that has a similar spatial structure, decay rate, and period to that estimated from observations fit to 154	
  
empirical models (Roberts and Battisti, 2011). The leading (slowest-decaying) Floquet mode in LOAM is 155	
  
thus referred to as the ENSO mode. Given observed climatological mean states and white noise forcing, 156	
  
LOAM produces reasonably realistic tropical Pacific climate variability, as demonstrated by the spatial 157	
  
structure and variance explained by the leading EOFs of tropical Pacific SSTAs and the seasonal variance 158	
  
and power spectra of SSTAs averaged over the Niño 3 region (5ºS-5ºN, 150ºW-90ºW; Roberts, 2007; 159	
  
Roberts and Battisti, 2011). It has also been shown to capture the character of ENSO in GCMs, as well as 160	
  
how ENSO can change in the presence of altered mean states (Roberts et al., 2014). 161	
  
 In the present study, we run LOAM with mean fields prescribed from each of three 40-year epochs 162	
  
that were highlighted in Wittenberg (2009), Karamperidou et al. (2014), and Wittenberg et al. (2014), 163	
  
characterized by low (Epoch L), medium (Epoch M) and high (Epoch H) ENSO variance in the CM2.1 pre-164	
  
industrial control simulation, and investigate the influence of the changes in tropical Pacific mean state on 165	
  
ENSO. These runs are referred to as LOAMEPOCH L, LOAM EPOCH M and LOAM EPOCH H, respectively. 166	
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LOAM was also run with mean states prescribed to be the average over all three of these epochs, hereafter 167	
  
referred to as LOAMCM2.1, as well as from observed mean fields, hereafter referred to as LOAMOBS. In 168	
  
LOAM OBS, the ocean temperature, currents, upwelling and wind stress fields are taken from the UMD 169	
  
Simple Ocean Data Assimilation reanalysis (SODA; Carton and Giese, 2008) for the period 1958 2001, 170	
  
and wind fields are taken from the European Centre for Medium-Range Weather Forecast ERA-40 171	
  
reanalysis (http://apps.ecmwf.int/datasets/) for the same period. Stochastic forcing in LOAM is applied by 172	
  
adding a normally distributed random number to each of the spectrally and spatially discretized SST 173	
  
components in the model. The amplitude of the noise forcing is adjusted so that the variance of Niño 3 SST 174	
  
anomalies in LOAM equals that from observations, or from a given epoch of the CM2.1 control simulation. 175	
  
Specifically, three different estimates of the noise amplitude are used in the LOAM experiments: (i) FM, in 176	
  
which the noise amplitude is adjusted so that the Niño 3 variance in LOAM is equal to that during Epoch 177	
  
M; (ii) FCM2.1, in which the noise amplitude is adjusted so that the Niño 3 variance in LOAM is equal to that 178	
  
over the first 2000 years of the CM2.1 simulation; and (iii) FOBS, in which the noise amplitude is adjusted 179	
  
so that the Niño 3 variance in LOAM is equal to that from the observed Niño 3 index. The SST output is 180	
  
smoothed with a 1-2-1 filter to reduce the noise, as in Zebiak and Cane (1987) and Thompson (1998). The 181	
  
various LOAM simulations implemented in this study are outlined in Table 1, along with their prescribed 182	
  
mean states and noise forcings. 183	
  
 184	
  
3. Characteristics of tropical Pacific variability and extreme ENSO epochs in CM2.1 185	
  
 186	
  

The GFDL CM2.1 global atmosphere/ocean/land/ice model has been widely recognized as a top-187	
  
performing GCM with regard to its simulation of tropical climate variability, and featured prominently in 188	
  
the third Coupled Model Intercomparison Project (CMIP3) and the Intergovernmental Panel on Climate 189	
  
Change Fourth Assessment Report (Reichler and Kim, 2008; van Oldenborgh et al., 2005; Wittenberg et 190	
  
al., 2006). However, like most coupled GCMs, CM2.1 has biases in its ENSO simulation (Wittenberg et al., 191	
  
2006).  These include excessive ENSO variance (Fig. 5a,c; Fig. 7 (Takahashi and Dewitte, 2016; 192	
  
Wittenberg et al., 2006)) and biased spatial patterns of SST variability, including SST variability that 193	
  
extends too far west, is too equatorially-confined, and is underestimated in the far equatorial eastern Pacific 194	
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(Fig. 4a,c). Such ENSO biases are common in GCMs, and are likely tied to tropical Pacific mean state 195	
  
biases (Ham et al., 2013), which in CM2.1 include a cold SST bias along the equator, a warm bias along the 196	
  
coast of South America, and equatorial easterlies that are too broad zonally and extend too far into the 197	
  
western Pacific ((Wittenberg et al., 2006).	
  198	
  

The 4,000 year-long pre-industrial control run of GFDL CM2.1 exhibits large variations in ENSO 199	
  
behavior on multi-decadal time scales, which have been the focus of a number of recent studies 200	
  
(Karamperidou et al., 2014; Wittenberg, 2009; Wittenberg et al., 2014). In the control run of this model, the 201	
  
variance of Niño 3 SSTAs during a given 40-year epoch can vary by over a factor of four (from 0.7  3.0 202	
  
°C2; Fig. 1). In this paper we focus on three 40-year periods in the CM2.1 control run that were highlighted 203	
  
in (Wittenberg, 2009), (Karamperidou et al., 2014), and (Wittenberg et al., 2014), to represent the diversity 204	
  

b-d. 205	
  
Years 1151  1190 (Epoch L) represent a period of extreme low variability (variance of Niño 3 SSTAs = 206	
  
0.7 °C2). Years 531-570 (Epoch M) are characterized by variability that is similar to the mean of the first 207	
  
2,000 years (variance of Niño 3 SSTAs = 1.8 C2), with fairly normally-distributed Niño 3 SSTAs that have 208	
  
a regular periodicity. Years 1711-1750 (Epoch H) are characterized by numerous intense warm events 209	
  
(variance of Niño 3 SSTAs = 3.0 C2) that are farther apart in time and have less regular periodicity than 210	
  
those in Epoch M.  211	
  

The leading patterns of tropical Pacific SST variability in each epoch are shown in Fig. 2. 212	
  
Empirical orthogonal functions (EOFs) 1-3 display roughly similar characteristics across epochs. Notably, 213	
  
a lower fraction of the total variance is explained by the first two EOFs in Epoch L relative to the other 214	
  
epochs and EOFs 2 and 3 appear to be mixed in Epoch M (their eigenvalues are not distinguishable). Fig. 3 215	
  
shows that compared to the long-term variance, the region of maximum variance in Epoch L is reduced and 216	
  
shifted east, while that in Epoch H is amplified and shifted west.  217	
  
 218	
  
4. ENSO in a linearized intermediate model versus GFDL CM2.1  219	
  
 220	
  

As part of our analysis to investigate the sources of the low-frequency ENSO modulation in 221	
  
CM2.1, we employ a linearized anomaly model of the tropical Pacific (LOAM). The rationale for this 222	
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approach is that it has been shown that all but the strongest observed ENSO events are well represented by 223	
  
linear dynamics (Penland and Sardeshmukh, 1995; Roberts and Battisti, 2011). Furthermore, comparison of 224	
  
the linear model simulations to the fully nonlinear CM2.1 simulation enables a rough partitioning of the 225	
  
linear and nonlinear components of ENSO evolution in CM2.1.  226	
  

The LOAM simulation with mean fields prescribed from the CM2.1 climatology averaged over all 227	
  
120 years of the three epochs (LOAMCM2.1), demonstrates spatial and temporal patterns of tropical Pacific 228	
  
SSTA variability that compare well in some aspects to CM2.1, while other features are notably dissimilar 229	
  
(Figs. 4-7). Differences include the region of maximum variance, which does not extend as far west in 230	
  
LOAMCM2.1 and is broader meridionally and weaker near the eastern boundary than in CM2.1 (c.f. Fig. 231	
  
4c,d). In addition, Niño 3 SSTAs in CM2.1 display large asymmetry in the amplitude of warm versus cold 232	
  
events (Fig. 5c; Fig. 6), indicating the presence of strong nonlinearities in CM2.1 (Choi et al., 2013 2015). 233	
  
In contrast, Niño 3 SSTAs in LOAM are linear by construction (Fig. 5d, Fig. 6).  The power spectrum of 234	
  
the first 2,000 years of Niño 3 SSTAs in CM2.1, much like the observations, shows a broad spectral peak 235	
  
between 2-5 yr (median period 3.4 yr), while the power spectrum in LOAMCM2.1 is much more sharply 236	
  
peaked (median period 3.2 yr; Fig. 7).  These results suggest that ENSO nonlinearities and/or multiplicative 237	
  
noise, which are not included in LOAM, may be important contributors to the temporal and spatial 238	
  
structure of ENSO in CM2.1. 239	
  

In nature, ENSO is strongly synchronized to the calendar year, with ENSO events tending to peak 240	
  
in boreal winter (Fig. 8a). In contrast, ENSO in CM2.1 displays weak seasonality, with Niño 3 SSTA 241	
  
variance peaking in boreal summer (Fig. 8c). Given CM2.1 mean states, ENSO in LOAM displays a 242	
  
notably distinct seasonality from CM2.1, with variance reaching a minimum in May/June and peaking 243	
  
around Sept. (Fig. 8d). The differences in seasonality between LOAMCM2.1 and LOAM tuned to 244	
  
observations (LOAMOBS, panels b and d in Fig. 8) are likely related to the biased annual cycle in CM2.1, 245	
  
through its influence on the seasonal growth rate of ENSO. In particular, the CM2.1 climatological wind 246	
  
field features an overly muted and delayed relaxation of the trades during boreal spring and an 247	
  
enhancement of the trades during boreal summer and fall that is too strong and does not persist into the 248	
  
winter. The trade wind biases are associated with a stronger semi-annual cycle in the tropical Pacific than is 249	
  
observed (Wittenberg, 2009).  250	
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 These results indicate that LOAM is able to capture some, but not all of the important features of 251	
  
ENSO behavior in CM2.1. Shortcomings of LOAM include the absence of surface heat flux dependence on 252	
  
wind speed (which may account for the difference in SST variability in the western Pacific and in the 253	
  
subtropics in CM2.1 versus LOAM; c.f. Fig. 4c,d). In addition, LOAM omits all nonlinear dynamics, 254	
  
including nonlinear dependence of atmospheric heating and wind stress anomalies on SST anomalies and 255	
  
nonlinear ocean dynamics (Chen et al., 2016; Choi et al., 2013; Takahashi and Dewitte, 2016). However, 256	
  
that LOAM has successfully managed to capture many of the fundamental characteristics of observed 257	
  
ENSO (Roberts and Battisti, 2011; Thompson and Battisti, 2001) as well as capture changes to ENSO from 258	
  
mean state changes in other CGCMs (Roberts et al., 2014) suggests that the inability of LOAM to 259	
  

260	
  
conform to the assumptions that are in LOAM, e.g. due to the strong nonlinearities in CM2.1.  261	
  
 Given the success of LOAM in simulating many observed features of ENSO variability, the linear 262	
  
model provides an excellent opportunity to contrast the linear components of ENSO evolution with the full 263	
  
nonlinear evolution in CM2.1. It also allows investigation of how the mean state contributes to the (linear 264	
  
component of the) differences in variance between the L, M, and H epochs.  We thus use LOAM to 265	
  
evaluate the linear component of the ENSO dynamics, sensitivities, and feedbacks in CM2.1. While this 266	
  

267	
  
ities in CM2.1. 268	
  

 269	
  
5. Drivers of low frequency ENSO modulation in CM2.1 270	
  
 271	
  

Because the CM2.1 control simulation is unforced, there are essentially four, non mutually 272	
  
exclusive, mechanisms that could cause the large multi-decadal ENSO variability: (1) low frequency 273	
  
changes in the tropical Pacific mean state, which alter the stability of the ENSO system; (2) low frequency 274	
  
changes in stochastic (weather) processes that influence ENSO; (3) random sampling from a stationary, 275	
  
linear process; and (4) nonlinear dynamics, including multiplicative noise, in the ENSO system that spreads 276	
  
variance over a range of time scales-- e.g. nonlinear interaction between the annual cycle and internal 277	
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modes of variability in the tropical Pacific that produce deterministic chaos (see e.g. Timmermann et al., 278	
  
2002). We discuss each of these possible mechanisms, below: 279	
  

 280	
  
i.  Influence of tropical Pacific mean state changes on ENSO in the linear model 281	
  

In their examination of the multi-decadal rectification of ENSO modulation in CM2.1, Ogata et al. 282	
  
(2013) demonstrated that mean state changes during the different CM2.1 epochs may be generated by the 283	
  
extreme ENSO behavior (that is, they are the residual impact of the ENSO cycles during each epoch), as 284	
  
also suggested by (Vimont, 2005), (Wittenberg, 2009), and (Wittenberg et al., 2014). The concept that 285	
  
ENSO is highly sensitive to mean state changes in the tropical Pacific has been widely explored and 286	
  
demonstrated, typically in studies that invoke intermediate complexity models of varying descriptions 287	
  
(Battisti and Hirst, 1989; Dewitte, 2000; Roberts et al., 2014; Wittenberg, 2002; Zebiak and Cane, 1987). It 288	
  
has further been suggested that the post-289	
  
the tropical Pacific background state (An and Wang, 2000).  290	
  

We sought to evaluate the impacts of the tropical Pacific mean state changes in CM2.1 on ENSO 291	
  
by prescribing the annual cycle of tropical Pacific climatology averaged separately over the three 292	
  
representative CM2.1 epochs in LOAM. The differences in annually-averaged tropical Pacific climatology 293	
  
among these epochs are shown in Figs. 9 and 10. Progressing from Epoch L to Epoch H, the mean states 294	
  
are characterized by weakening of the surface easterly trade winds in the western and central equatorial 295	
  
Pacific, warming of the ocean surface and subsurface in the eastern equatorial Pacific, and cooling in the 296	
  
western equatorial Pacific (Fig. 9; Fig. 10) -- consistent with the results of Ogata et al. (2013) in their 297	
  
examination of the multi-decadal rectification of ENSO modulation in CM2.1. 298	
  

When the mean states from the three CM2.1 epochs are prescribed in LOAM, the relative changes 299	
  
in the variance of Niño 3 SSTAs in the linear model are opposite to those observed in the CM2.1 300	
  
simulation: the variance is lowest in Epoch H and highest in Epoch L (Table 1; Fig. 11). In Epoch H, the 301	
  
decreased ENSO variance relative to Epoch M is due to a decrease in the growth rate of the ENSO mode. 302	
  
In Epoch L, the increase in variance relative to Epoch M is tied to the increased growth rate of the lower 303	
  
order coupled modes (not shown). Collectively, our results lend support to the idea that tropical Pacific 304	
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mean state changes are not the primary cause of the intrinsically-generated extreme ENSO epochs in the 305	
  
CM2.1 control run.  306	
  
 That the LOAM simulations demonstrate the sensitivity of the linear component of ENSO to 307	
  
changes in the tropical Pacific mean state (Table 1), is suggestive of a two-way feedback mechanism 308	
  
between low frequency ENSO modulation and tropical Pacific mean state changes in CM2.1, wherein: (1) 309	
  
stochastic forcing and nonlinearity produce low frequency ENSO modulation, which rectify into tropical 310	
  
Pacific mean state changes due to the ENSO asymmetries in CM2.1; (2) these rectified mean state changes 311	
  
then feed back negatively on the ENSO growth rates, thus tempering the ENSO modulation. For example, 312	
  
as shown in Ogata et al. (2013), strong-ENSO epochs in CM2.1 weaken the multi-decadal zonal SST 313	
  
gradient and zonal winds in the central to western equatorial Pacific (Fig 9c), and thus weaken the zonal tilt 314	
  
of the thermocline (Fig 10b). According to the stability analysis performed with LOAM, these mean state 315	
  
changes act to stabilize the coupled system and weaken ENSO (Table 1). Along the same lines, weak-316	
  
ENSO epochs in CM2.1 strengthen the multi-decadal zonal SST gradient and zonal wind stress in the 317	
  
central to western equatorial Pacific (Fig. 9B), and thus strengthen the zonal tilt of the thermocline (Fig. 318	
  
10A). The LOAM stability analysis indicates that these mean state changes act to destabilize the lower 319	
  
order modes (not shown) and thereby modestly strengthen the ENSO variability (Table 1; Fig. 11).  320	
  

Further experiments were performed with LOAM, in which individual components of the mean 321	
  
states of Epochs H and L were substituted into the Epoch M simulation. Results from these experiments 322	
  
(not shown) indicate two primary mechanisms of increased stability of the coupled system in Epoch H. 323	
  
First, the weaker climatological trade winds lead to reduced coupling via the linear dependence of the wind 324	
  
stress anomalies on the mean wind speed in LOAM (see Eqn. 18 in Supplemental Material; (see Eqn. 18 in 325	
  
Supplemental Material; Battisti and Hirst, 1989). Second, a weaker mean zonal tilt of the equatorial 326	
  
thermocline leads to weaker contribution of anomalous upwelling to SST changes (i.e. weakened upwelling 327	
  
feedback; see Eqns. 1-3 in the Supplementary Material). Details of these feedback processes can be found 328	
  
in (Thompson, 1998a, b) and (Roberts and Battisti, 2011). The primary mechanisms of decreased stability 329	
  
of the coupled system in Epoch L are the same as those discussed above, only with opposite sign (e.g. 330	
  
stronger climatological winds enhance coupling). 331	
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 There are two caveats to the proposed negative feedback mechanism between the tropical Pacific 332	
  
mean state changes and low frequency ENSO modulation in CM2.1. First, nonlinearities in CM2.1 may act 333	
  
to compensate for ing the 334	
  
sensitivity of ENSO to mean state changes. Second, because LOAM does not include state-dependent noise 335	
  
forcing, any influence that the mean state changes may have on the noise forcing are not considered in this 336	
  
analysis.  337	
  

 338	
  
ii.  Influence of changes in atmospheric noise on low-frequency ENSO modulation  339	
  

The results highlighted in the previous section suggest that mean state changes in the tropical 340	
  
Pacific do not explain the periods of extreme ENSO variability in CM2.1 -- suggesting that the ENSO 341	
  
modulation in CM2.1 is instead driven by atmospheric noise and/or nonlinear dynamics. These results are 342	
  
consistent with the results presented in (Wittenberg et al., 2014), who showed that the occurrence of 343	
  
extreme-ENSO epochs in CM2.1 were in fact unpredictable.  344	
  

 Multi-decadal fluctuations of ENSO variability could arise through low frequency changes in the 345	
  
structure and/or amplitude of the atmospheric noise forcing (either internal or external to the tropical 346	
  
Pacific), including a multiplicative dependence of westerly wind bursts on the zonal extent of the Pacific 347	
  
warm pool (Graham et al., 2016). While an attempt was made to characterize the noise forcing in the three 348	
  
CM2.1 epochs using a Linear Inverse Model (LIM; e.g. Penland and Sardeshmukh, 1995), it was concluded 349	
  
that 40 years of CM2.1 data was not long enough to robustly constrain the dynamics of the coupled system 350	
  
(see S.2 in the Supplemental Material for details). These results are in contrast to those from (Newman et 351	
  
al., 2011), in which 42 years was deemed sufficient to constrain a LIM trained on observational data. These 352	
  
results again highlight the difference between ENSO in CM2.1 and ENSO in nature -- the LIM fit to 353	
  

strongly-modulated ENSO system is less robust to short epochs than the LIM fit to observations. 354	
  
Because of these issues, the possible role of changes in atmospheric noise forcing on 355	
  
modulation has yet to be evaluated. 356	
  

 357	
  
iii. Low-frequency ENSO modulation through randomly sampling a stationary, linear process 358	
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 Independent from any changes in the background climate state or the structure or amplitude of 359	
  
atmospheric noise forcing, multi-decadal variations in ENSO variability arise solely due to random 360	
  
sampling from a system governed by linear, stationary dynamics. For a stationary, linear process with well-361	
  
defined long-term variance, and for epochs that randomly and independently sample the underlying 362	
  
distribution of multi-decadal ENSO variance, the probability distribution function (PDF) of epochal 363	
  
variance will match that of a 2 distribution (Russon et al., 2014). 364	
  
 In order to compare a 2 distribution to the ENSO modulation present in CM2.1, the probability 365	
  
distribution of ENSO variance (hereafter defined as the variance of Niño 3 SSTAs) in 40-year intervals was 366	
  
plotted from the first 2,000 years of the CM2.1 simulation alongside 2 distributions (Fig. 12), calculated 367	
  
using Eqns. 1-2, below (from Russon et al., 2014). To further compare 368	
  
that of a linear system with additive noise, the 2,000-year LOAM simulation with CM2.1 mean states and 369	
  
CM2.1-tuned noise, and the 2,000-year LOAM simulation with observed mean states and observation-370	
  
tuned noise were also plotted.  371	
  

While one might expect the temporal properties of ENSO in the low-dimensional, linear system in 372	
  
LOAM to be notably distinct from the high dimensional, fully nonlinear CM2.1, the distribution of multi-373	
  
decadal ENSO variance is notably similar in CM2.1 and the linear model, with the exception of a slightly 374	
  
broader distribution in CM2.1. A two-sample Kolmogorov-Smirnov test of the variance histograms 375	
  
indicates that the null hypothesis (that the two data sets were drawn from the same distribution) cannot be 376	
  
rejected. The correspondence of the CM2.1 histogram with the 2 distribution indicates that ENSO statistics 377	
  
even in the highly nonlinear CM2.1 are roughly stationary at multi-decadal time scales. This result is 378	
  
consistent with the finding by (Wittenberg, 2009) and (Wittenberg et al., 2014) who showed that the warm 379	
  
events in CM2.1 resembled a memory-less interannual process with no decadal-scale predictability. These 380	
  
findings demonstrate that the low-frequency ENSO modulation in CM2.1 is driven by transient processes 381	
  
that operate at time scales that are interannual or shorter.   382	
  
 Like most coupled GCMs, CM2.1 has biases in its ENSO simulation (Wittenberg et al., 2006).  383	
  
Importantly, these biases include excessive ENSO variance in CM2.1 (Fig. 5a,c; Fig. 7 (Takahashi and 384	
  
Dewitte, 2016; Wittenberg et al., 2006)). In order evaluate the influence of this overly strong ENSO 385	
  
variance on the low-frequency ENSO modulation, the variance distribution from the LOAM simulation 386	
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tuned to observations (LOAMOBS + FOBS; red histogram in Fig. 12) was compared to the distribution from 387	
  
the LOAM simulation tuned to CM2.1 (LOAMCM2.1 + FCM2.1; black histogram in Fig. 12). The results 388	
  
demonstrate that the distribution with weaker ENSO variance (LOAMOBS + FOBS) is much more sharply 389	
  
peaked about its respective mean than the distribution with stronger ENSO variance (LOAMCM2.1 + FCM2.1). 390	
  
Indeed, the range of multi-decadal variance in CM2.1 (and LOAM tuned to CM2.1) is twice that produced 391	
  
by LOAM tuned to observations.  392	
  
 There is a simple statistical reason for this, which explains how strong ENSO variance is 393	
  
directly related to its strong inter-epoch modulation of ENSO variance (Fig. 12). Given a normal 394	
  

2, the expected distribution of the sample variance of a random sample of size n 395	
  
is 396	
  

 397	
  

where  is the Chi-square distribution with n-1 degrees of freedom.  can be estimated from: 398	
  

 399	
  

 where  is a dimensionless factor by which the effective degrees of freedom are reduced relative to the 400	
  
number of data points in each interval (here, 480) and is constrained by the autocorrelation of the Nino 3 401	
  
SSTA data. The autocorrelation function ( ) is summed over the number of time steps (L) needed to reach 402	
  
the first two sign changes in the autocorrelation function (von Storch and Zwiers, 2003; Russon et al., 403	
  
2014). Now suppose that ENSO is memoryless beyond a few years -- as in CM2.1, in which the wait times 404	
  
between El Niño events are Poisson-distributed at decadal and longer scales (Wittenberg, 2009), with no 405	
  
apparent decadal predictability of ENSO amplitude (Wittenberg et al., 2014).  Further suppose that the 406	
  
Niño 3 SST anomalies have long- 2, and that each 40-year epoch contains n effectively-407	
  
independent samples of the Niño 3 SST anomalies.  The inter-epoch spread of the epochal variance, i.e. the 408	
  
variance modulation, would then increase like the square of the long- 2: 409	
  

 410	
  

In simple terms, a weak memoryless ENSO can only exhibit weak variance, while a strong memoryless 411	
  
ENSO can exhibit either strong or weak variance  resulting in much more variance modulation. This 412	
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disparity is largely removed if the relative change in variance (with respect to the long-term variance) is 413	
  
compared instead (Fig. 12b). In this case the empirical distributions are highly similar, and thus a -40 to + 414	
  
55% change in ENSO variance in a given 40-year interval (representing 2.5-97.5% of the CM2.1 415	
  
distribution) is similarly likely in the CM2.1, LOAMCM2.1 and LOAMOBS simulations. 416	
  

To summarize: these results indicate that the distribution of ENSO variance in CM2.1 is 417	
  
dramatically broadened with respect to the linear system with ENSO variance tuned to that observed over 418	
  
the past 50 years. However, the broad CM2.1 distribution is entirely consistent with the distribution 419	
  
expected from a linear system that has excessive ENSO variance. The correspondence of the CM2.1 420	
  
histogram with that from the linear model and the 2 distribution indicates that ENSO statistics in CM2.1 421	
  
are roughly stationary at multi-decadal time scales, demonstrating that the low-frequency ENSO 422	
  
modulation in CM2.1 is driven by transient processes that operate at time scales that are interannual or 423	
  
shorter. Taken together, the results from the linear LOAM and nonlinear CM2.1 show that a memory-less 424	
  
interannual ENSO, whether linear or highly nonlinear, will generate interdecadal variance modulation that 425	
  
resembles a 2 distribution, and that the variance modulation increases sharply as ENSO strengthens. In this 426	
  

-decadal modulation. In 427	
  
absolute terms, the multi-decadal modulation in CM2.1 is twice that produced by a linear system tuned to 428	
  
the ENSO variance observed over the past 50 years. In contrast, the relative changes in ENSO modulation 429	
  
are notably similar between the linear and nonlinear models, with the exception of a slightly broader 430	
  
distribution in the nonlinear CM2.1. These results underscore the findings of Russon et al. (2014) that only 431	
  
relative changes in multi-decadal ENSO variance can robustly be compared across models and 432	
  
observations. 433	
  
 434	
  
(iv) The influence of nonlinearities on low-frequency ENSO modulation in CM2.1 435	
  
 While the results presented in Section (iii) demonstrate that the nonlinearities in CM2.1 do not 436	
  
dramatically broaden the distribution of variance as compared to a linear system with equal ENSO 437	
  
variability, this does not imply that nonlinearities are entirely unimportant in determining the multi-decadal 438	
  
modulation of ENSO. The nonlinearities may in fact be critical to the multi-decadal ENSO modulation by 439	
  
contributing to the overly active ENSO variability that causes the enhanced multi-decadal modulation, e.g. 440	
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through enhancing the growth of strong El Nino events (e.g. Takahashi and Dewitte, 2016).1 Additional 441	
  
simulations with LOAM suggest that linear dynamics operating on the biased CM2.1 mean states are not 442	
  
the source of the overactive ENSO activity in CM2.1 (see S.3 in the Supplementary Material) -- which in 443	
  
turn further suggests that nonlinear dynamics and multiplicative noise likely play an important role in 444	
  
driving the excessive ENSO variance, and thus low-frequency ENSO modulation, present in CM2.1. 445	
  
Results presented below indeed demonstrate that these nonlinearities are inextricably linked to the low-446	
  
frequency ENSO modulation in CM2.1.  447	
  

The coupled ocean-atmosphere system appears to be substantially more nonlinear in CM2.1 than 448	
  
has been observed over the past 50 years (Fig. 13-14). A key nonlinearity in CM2.1 is the response of the 449	
  
central Pacific low-level wind (and zonal wind stress) anomalies to SST anomalies  indicative of the 450	
  
Bjerknes feedback that is central to the physics of ENSO (Battisti and Hirst, 1989). This feedback is 451	
  
approximately linear for all but the strongest El Nino events in the observations, while a highly nonlinear 452	
  
feedback is present in CM2.1 (Fig. 13; Fig. S2). These results suggest that the highly nonlinear response of 453	
  
the atmosphere to central Pacific SST anomalies may be responsible for the growth of strong El Nino 454	
  
events in CM2.1.  455	
  

Previous studies have also suggested that the key nonlinearities relevant to ENSO in CM2.1 are in 456	
  
the atmosphere (Chen et al., 2016; Choi et al., 2013; Takahashi and Dewitte, 2016). Possible sources of the 457	
  
nonlinear response of the atmosphere to SST anomalies in CM2.1 may include a nonlinear moisture 458	
  
convergence feedback, changes in the character of the central Pacific atmospheric boundary layer 459	
  
associated with shifts in the edge of the warm pool convective region, the nonlinear relationship between 460	
  
specific humidity and surface air temperature in the tropics, and state-dependent multiplicative noise 461	
  
forcing (see S.4 in the Supplementary Material for further discussion; (e.g. the eastward shift of westerly 462	
  
wind events, as the warm pool shifts eastward during the onset of El Nino events; Graham et al., 2016; 463	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  However, it is also possible that the strong nonlinearity in CM2.1 is a symptom, rather than a cause of its 
strong ENSO variability. The strong climatological cold tongue in CM2.1 suggests that the model has 
overactive ocean-dynamical cooling. If this is indeed the case, hyperactive (but possibly still linear) 
subsurface ENSO feedbacks may be the driver of its higher amplitude SSTAs.  In a model with a 
climatological equatorial cold bias (which shifts the atmospheric convective zones farther to the west and 
farther off-equator), those greater SSTAs then produce a greater atmospheric nonlinearity Choi, K.Y., 
Vecchi, G.A., Wittenberg, A.T., 2013. ENSO Transition, Duration, and Amplitude Asymmetries: Role of 
the Nonlinear Wind Stress Coupling in a Conceptual Model. Journal of Climate 26, 9462-9476..	
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Levine, in press; Vecchi et al., 2006). Each of these nonlinearities may be amplified by the background 464	
  
state biases in the Pacific of CM2.1, including an excessive contrast between the off-equatorial 465	
  
convergence zones (which are too rainy) and the eastern equatorial cold tongue (over which the atmosphere 466	
  
is too clear and dry). This enhanced contrast could strengthen the atmospheric nonlinearity near the 467	
  
equator, by giving convection more room to increase during El Nino and less room to decrease during La 468	
  
Niña (Chen et al., 2016).  Whatever the source(s) of the overly nonlinear Bjerknes feedback in the central 469	
  
Pacific in CM2.1, it appears to give rise to larger ENSO events than those yet observed. 470	
  
 Evidence for an important role of such transient nonlinearities in driving the low-frequency ENSO 471	
  
modulation in CM2.1 can be seen by evaluating the SST and wind/windstress anomalies separately for the 472	
  
high- and low-variance ENSO epochs. High-variance ENSO epochs in CM2.1 are populated by more 473	
  
extreme ENSO events (panels A and B of Fig. 13), which are governed by a highly nonlinear Bjerknes 474	
  
feedback in the central Pacific. The threshold behavior of zonal wind and wind stress anomalies in the 475	
  
central Pacific during these epochs in response to warm SST anomalies are evidence of this strong 476	
  
nonlinearity (Fig. 13b; Fig. 14b; as identified in Takahashi and Dewitte, 2016), as is the large positive 477	
  
skewness in central Pacific wind stress anomalies (Fig. 14D) and in eastern Pacific SST anomalies (Fig. 478	
  
15D). In contrast, the low-variance epochs are characterized by weaker ENSO events with more linear 479	
  
behavior (Fig. 13A,B; panel C of Fig. 14 and 16). From these results we conclude that (1) the physics of the 480	
  
coupled ocean-atmosphere system in CM2.1 are close to linear for the weaker ENSO epochs, resembling 481	
  
the past 50 years; and (2) -variance ENSO epochs (such as Epoch H; Fig. 1D) are generated 482	
  
by a collection of stochastically-driven extreme ENSO events that are highly nonlinear. From these 483	
  
analyses we conclude that transient nonlinearities or multiplicative noise help drive the low-frequency 484	
  
ENSO modulation in CM2.1. 485	
  
modulation is decadally unpredictable (Wittenberg et al., 2014) and produces rectified effects on the 486	
  
decadal mean state (Ogata et al., 2013).  487	
  
 488	
  
6. Conclusions 489	
  
 Large, unforced, multi-decadal changes in ENSO variability have been previously reported from 490	
  
the long pre-industrial control run of GFDL CM2.1. We evaluated the possible sources of this low-491	
  



	
  

	
   19	
  

frequency ENSO modulation, by characterizing the extreme ENSO epochs in CM2.1 and employing a 492	
  
linearized intermediate-complexity model of the tropical Pacific (LOAM).  493	
  

Simulations with the linear model demonstrate that intrinsically-generated tropical Pacific decadal 494	
  
mean state changes produced through a rectified nonlinear response to the low frequency ENSO 495	
  
modulation do not contribute to the extreme-ENSO epochs in CM2.1. Rather, these decadal mean state 496	
  
changes actually serve to damp the ENSO modulation, primarily by stabilizing the ENSO mode during 497	
  
strong-ENSO epochs. These results point to a possible feedback loop between ENSO and the mean state -- 498	
  
whereby noise and nonlinearities produce extreme ENSO epochs, which are then counteracted by linear 499	
  
feedbacks from the mean state. However, it is also possible that in CM2.1, nonlinearities and/or state-500	
  
dependent noise forcing give rise to mean state feedbacks that are not predicted by the linear model. 501	
  
 The presence of low frequency changes in stochastic (weather) processes is difficult to address 502	
  
using the suite of tools employed in this analysis and thus its contribution to the low-frequency ENSO 503	
  
modulation in CM2.1 has yet to be evaluated. However, we demonstrate (using the linear model runs, 504	
  
CM2.1, and observations) that the low-frequency ENSO modulation can be well described by the simplest 505	
  
model of a linear, stationary process. These results indicate that even in the highly nonlinear CM2.1, ENSO 506	
  
statistics are roughly stationary at multi-decadal time scales (in the absence of external forcings); and the 507	
  
intrinsic low-frequency ENSO modulation in CM2.1 is driven by transient processes operating at 508	
  
interannual or shorter time scales. One might expect nonlinearities, multiplicative noise, and other physics 509	
  
not included in the simple linear model to contribute significantly to the spectral broadening of ENSO, in 510	
  
both the observations and CM2.1. However, we show that their effects on the level of ENSO modulation 511	
  
appear to be weak, compared to the effects of the strong ENSO variance in CM2.1.  512	
  
 We demonstrate that nonlinearities are inextricably linked to the multi-decadal ENSO modulation 513	
  
in CM2.1. High-variance ENSO epochs in CM2.1 are populated by extreme ENSO events that are 514	
  
characterized by a highly nonlinear Bjerknes feedback in the central Pacific; low-variance epochs are 515	
  
characterized by weaker ENSO events with more linear behavior. While nonlinearities in CM2.1 do not 516	
  
dramatically broaden the distribution of variance compared to a linear system with equal long-term ENSO 517	
  
variance, the nonlinearities likely shape the amplitude distribution of ENSO modulation by contributing to 518	
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an overactive ENSO (e.g. by intensifying strong El Nino events), which then broadens the distribution of 519	
  
epochal ENSO variance. 520	
  
 These results have important implications for understanding the past, present, and future of ENSO. 521	
  

-to-centennial modulation of ENSO would suggest 522	
  
that existing observational records might be too short to rule out such modulation in the real world (e.g. a 523	
  
factor of four spread in the variance of Niño 3 SSTAs during different 40-year epochs). Therefore, to detect 524	
  
a forced change in ENSO variability, e.g. using proxy recorders like Pacific corals to characterize the pre-525	
  
instrumental epoch, either the records would have to be long or the change large. However, our results 526	
  
suggest that if the past 50 years of observations are representative of the average interannual variance of 527	
  
ENSO in the real world, then the true spectrum of unforced ENSO modulation is, in absolute terms, likely 528	
  
substantially narrower than that suggested by CM2.1. Forced changes might therefore be detectable using 529	
  
relatively short records. However, when relative, rather than absolute, changes in ENSO variance are 530	
  
compared, the distributions of variance are remarkably insensitive to the differing ENSO characteristics. 531	
  
The statistics of the relative changes in ENSO variance might therefore be extrapolated from the fully 532	
  
nonlinear CM2.1 to other systems (e.g. those with less variable and/or more linear ENSOs). 533	
  

Lastly, we note that tropical Pacific mean state changes due to future greenhouse gas increases are 534	
  
projected to grow substantially larger than the unforced mean state changes seen between the weak-ENSO 535	
  
versus strong-ENSO epochs in CM2.1 (Wittenberg, 2015; Xie et al., 2010).  Given projected future climate 536	
  
changes in the tropical Pacific, the LOAM-inferred ENSO sensitivity would suggest substantial and 537	
  
detectable changes in ENSO that are consistent with actual forced CM2.1 scenarios (Wittenberg, 2015). On 538	
  
the other hand, the LOAM-inferred ENSO sensitivity would also suggest that the mean state biases 539	
  
prevalent in GCMs could have large impacts on how ENSO responds to forcings -- underscoring the 540	
  
critical need to reduce these biases, in order to make reliable projections of the future of ENSO.  541	
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Table 1: ENSO characteristics in LOAM simulations. 670	
  
 LOAM CM2.1 or 

obs 

Run name Mean state Variance 
tuned to 

Noise forcing 
ampl. ( C) a CD b 

Mode 
period 
(yr) c 

Mode 
growth 

rate 
(yr-1) d 

Variance 
in LOAM 

e 

Variance 
in CM2.1 
or obs 

e 

LOAMEPOCH L+ 
FM Epoch L - 0.104 1.82E-3 3.2 0.49 2.2 0.7 

LOAMEPOCH M + 
FM Epoch M Epoch M 0.104 1.82E-3 3.0 0.49 1.8 1.8 

LOAMEPOCH H + 
FM Epoch H - 0.104 1.82E-3 3.0 0.43 1.3 3.0 

LOAMCM2.1 + FM Epoch 
L,M,H avg - 0.104 1.82E-3 3.0 0.48 1.8 1.7f 

LOAMCM2.1 + 
FCM2.1 

Epoch 
L,M,H avg 

4,000-yr 
CM2.1 0.102 1.82E-3 3.1 0.48 1.7 1.7f 

LOAMCM2.1 + 
FOBS 

Epoch 
L,M,H avg - 0.054 1.82E-3 3.1 0.48 0.5 1.7f 

LOAMOBS + FOBS obs obs 0.054 1.85E-3 2.8 0.44 0.8 0.8 

a The amplitude of the noise forcing in LOAMEPOCH M was prescribed so that the variance of Nino 3 SSTAs 671	
  
in LOAM matched that in CM2.1 Epoch M. This same noise forcing was used in all other LOAM 672	
  
simulations, aside from LOAMOBS + FOBS and LOAMCM2.1 + FOBS, in which the noise amplitude was 673	
  
prescribed based on the Niño 3 variance from the last 40 years of observations. 674	
  
b Atmospheric drag coefficient (see Supplementary Material). 675	
  
c Period of the ENSO mode. 676	
  
d Mode growth rate, expressed as the fractional change in the amplitude of the ENSO mode over the course 677	
  
of a year. Growth rates less than 1 indicate damped modes. 678	
  
e Variance of 3-month running mean Nino 3 SSTAs. 679	
  
f Variance of Nino 3 SSTAs across 4,000 years of CM2.1 680	
  
  681	
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Figure Captions 682	
  
 683	
  
Fig. 1 Time series of 3-month running mean Niño 3 SSTAs in A) observations (ERSST.v3b, 1971-2010) 684	
  
and CM2.1 epochs B) Epoch L, C) Epoch M, and D) Epoch H.  The variance of each time series is 685	
  
indicated in the top left corner of each panel. 686	
  
 687	
  
Fig. 2 Normalized EOF 1-3 of tropical Pacific SSTAs from A-C) detrended observations (ERSST.v3b, 688	
  
1971-2010) and CM2.1 epochs D-F) Epoch L, G-I) Epoch M, and J-L) Epoch H.  The fraction of total 689	
  
SSTA variance captured by each pattern is indicated in the top left corner of each panel.  ** EOF 2 and 3 in 690	
  
Epoch M are not statistically distinguishable, based on the method of North (1982). 691	
  
 692	
  
Fig. 3 Variance of tropical Pacific SSTAs in A) 500 years of the CM2.1 control run and the CM2.1 epochs 693	
  
B) Epoch L, C) Epoch M, and D) Epoch H. In subpanels (E-H), the variances are normalized with respect 694	
  
to the maximum in each plot. 695	
  
 696	
  
Fig. 4 EOF 1 of tropical Pacific SSTAs from A) observations (ERSST.v3b, 1971-2010), B) 200 years of 697	
  
LOAM run with observed mean fields, C) 200 years of the CM2.1 control-run simulation, and D) 200 years 698	
  
of LOAM run with mean fields from CM2.1 (averaged over Epoch L, M, H). The fraction of total SSTA 699	
  
variance captured by EOF 1 is indicated in the top left corner of each panel.   700	
  
 701	
  
Fig. 5 3-month running mean Niño 3 SSTAs in A) observations (ERSST.v3b, 1880  2010), B) 130 years 702	
  
of the 2,000-year LOAM with mean states from observations, C) 130 years of the 4,000-year control run of 703	
  
CM2.1, and D) 130 years of the 4,000-year LOAM with mean states from CM2.1 (averaged over Epoch L, 704	
  
M, H). The variance of each complete time series is indicated in the top left corner of each panel. Only the 705	
  
last 50 years of observational data was used to calculate the variance in panel (A), as only the period from 706	
  
1961-2010 was used to tune the LOAMOBS run. 707	
  
 708	
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Fig. 6 Cumulative probability distributions of Niño 3 SSTAs in detrended observations (black; NOAA 709	
  
ERSST v3b, 1880  2011 AD), 2,000 years of the CM2.1 control run (red). Gaussian distributions with the 710	
  
mean and standard deviation estimated from the data are plotted as dashed lines. The LOAMOBS and 711	
  
LOAMCM2.1 curves have been omitted for clarity, but overlay the Gaussian distributions fit to observations 712	
  
and CM2.1, respectively.  713	
  
 714	
  
Fig. 7 Power spectra of 3-month running mean Niño 3 SSTAs in observations (solid black; NOAA 715	
  
ERSST.v3b, 1880  2011), the 4,000-year LOAM tuned to observations (dashed black), the 4,000-year 716	
  
control run of CM2.1 (solid grey) and the 4,000-year LOAM tuned to CM2.1 (dashed grey). The power 717	
  
spectra were computed using a forward Fast Fourier Transform; they preserve variance so that the area 718	
  
under the curve equals the variance of the detrended Niño 3 timeseries.  719	
  
 720	
  
Fig. 8 Variance of 3-month running mean Niño 3 SSTAs as a function of month in A) observations 721	
  
(ERSST.v3b, 1880-2010), B) the 4,000 year LOAM with observed mean states, C) the 4,000 year CM2.1 722	
  
control run, and D) the 4,000 year LOAM run with CM2.1 mean states. 723	
  
 724	
  
Fig. 9 A) Mean annual tropical Pacific SST and near-surface winds in CM2.1 Epoch M and differences in 725	
  
mean surface winds between CM2.1 epochs: B) Epoch L  M; C) Epoch H  M.  726	
  
 727	
  
Fig. 10 Differences in mean annual equatorial Pacific upper ocean temperature profiles (colors; averaged 728	
  
between 2°S:2°N) in CM2.1 epochs: A) Epoch L - M and B) Epoch H  M. Unfilled contours are the mean 729	
  
annual equatorial temperature in Epoch M. The contour interval is 2°C and the bold contour is the 20°C 730	
  
isotherm.  731	
  
 732	
  
Fig. 11 Variance of Niño 3 SSTAs in LOAM versus CM2.1. The LOAM simulations correspond to 733	
  
LOAMEPOCH L + FM, LOAMEPOCH M + FM, LOAMEPOCH H + FM and LOAMCM2.1 + FM in Table 1. The 734	
  
diameter of the data points is proportional to the growth rate of the ENSO mode. The dotted 1:1 line is 735	
  
plotted for visual reference. 736	
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 737	
  
Fig. 12 Probability distributions of 40-738	
  
(lines) for the 4,000-year CM2.1 run (black), the 4,000-year LOAMCM2.1+FCM2.1 run (blue), the 4,000-year 739	
  
LOAMOBS+FOBS run (red), and the 4,000-year LOAMCM2.1+ FOBS 740	
  
calculated using Eqns. (1)-(2). The grey shaded bar represents the range of observed variance in 40-yr 741	
  
intervals across the 20th century and the vertical line represents the observed variance during the period 742	
  
1961-2010 (from NOAA ERSST v3b 1961-2010). B) PDFs from subpanel (A) converted into relative 743	
  
differences in variance, with respect to the long-term variance in each simulation. 744	
  
 745	
  
Fig. 13 Monthly zonal wind stress anomalies in the western Pacific (left column) and central Pacific (right 746	
  
column) versus Niño 3 SSTAs in 500 years of the CM2.1 control simulation (top row) or observations 747	
  
(bottom row; 1958-2001; SODA zonal windstress and ERSST v3b SST data). The CM2.1 data are divided 748	
  
into two subsets- -year 749	
  
running mean variance of Niño 3 SSTAs  2.0 C2750	
  
from periods in which the 40-year running mean variance of Niño 3 SSTAs  1.0 C2. For the WP data (left 751	
  
column) zonal wind anomalies were averaged over the Niño 4 region (160°E:150°W, 5°S:5°N) for 752	
  
observations and over 150°E:160°W, 5°S:5°N for CM2.1 (representing the region of peak zonal wind 753	
  
anomalies in each data set). For the CP data (right column), the zonal wind anomalies were averaged over 754	
  
the Nino 3.4 region (170°W:120°E, 5°S:5°N) for both CM2.1 and observations. 755	
  
 756	
  
Fig. 14 Skewness of tropical Pacific zonal wind stress anomalies in A) 500 years of the CM2.1 control 757	
  
simulation; B) observations (SODA v2.0.2-4, 1958-2007); C) low variance epochs in CM2.1 and D) high 758	
  
variance epochs in CM2.1. The CM2.1 data are divided into two subsets- 759	
  
(C) contains data from periods in which the 40-year running mean variance of Niño 3 SSTAs  1.0 C2  760	
  

 (D) contains data from periods in which the 40-year running mean 761	
  
variance of Niño 3 SSTAs  2.0 C2. 762	
  
 763	
  
Fig. 15 As in Fig. 14, but for SSTAs. Observational data is from ERSST.v3b, for the period 1951-2010. 764	
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CM2.1 (dashed grey). The power spectra were comput-
ed using a forward Fast Fourier Transform; they 
preserve variance so that the area under the curve 
equals the variance of the detrended Niño 3 timeseries. 
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Fig. 8 Variance of 3-month running mean Niño 3 SSTAs as a function 
of month in A) observations (ERSST.v3b, 1880-2010), B) the 4,000 
year LOAM with observed mean states, C) the 4,000 year CM2.1 
control run, and D) the 4,000 year LOAM run with CM2.1 mean states.
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Fig. 9 A) Mean annual tropical Pacific SST and near-surface 
winds in CM2.1 Epoch M and differences in mean surface winds 
between CM2.1 epochs: B) Epoch L – M; C) Epoch H – M. 
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Fig. 10 Differences in mean annual equatorial Pacific upper 
ocean temperature profiles (colors; averaged between 
2°S:2°N) in CM2.1 epochs: A) Epoch L - M and B) Epoch H 
– M. Unfilled contours are the mean annual equatorial 
temperature in Epoch M. The contour interval is 2°C and the 
bold contour is the 20°C isotherm. 
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Fig. 11 Variance of Niño 3 SSTAs in LOAM versus CM2.1. 

The LOAM simulations correspond to LOAM
Epoch L

 + F
M

, 

LOAM
Epoch M

 + F
M

, LOAM
Epoch H

 + F
M

 and LOAM
CM2.1

 + F
M

 
in Table 1. The diameter of the data points is proportional to 
the growth rate of the ENSO mode. The dotted 1:1 line is 
plotted for visual reference.



 

 

 

Fig. 12 A) Probability distributions of 40-year variance of Niño 3 SSTAs (bars) plotted with χ2 

distributions (lines) for the 4,000-year CM2.1 run (blue), the 4,000-year LOAM
CM2.1

+F
CM2.1

 run 

(black), the 4,000-year LOAM
OBS

+F
OBS

 run (red), and the 4,000-year LOAM
CM2.1

+F
OBS

 run 
(green). The χ2 distributions were calculated using Eqns. (1)-(2). The grey shaded bar represents 
the range of observed variance in 40-yr intervals across the 20th century and the vertical line 
represents the observed variance during the period 1961-2010 (from NOAA ERSST v3b 
1961-2010). B) PDFs from subpanel (A) converted into relative differences in variance, with 
respect to the long-term variance in each simulation. 
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Fig. 13 Monthly zonal wind stress anomalies in the western Pacific (left column) and central Pacific 
(right column) versus Niño 3 SSTAs in 500 years of the CM2.1 control simulation (top row) or 
observations (bottom row; 1958-2001; SODA zonal windstress and ERSST v3b SST data). The 
CM2.1 data are divided into two subsets- the “high variance epochs” subset contains data from 
periods in which the 40-year running mean variance of Niño 3 SSTAs ≥ 2.0°C2, while the “low 
variance epochs” subset contains data from periods in which the 40-year running mean variance of 
Niño 3 SSTAs ≤ 1.0°C2. For the WP data (left column) zonal wind anomalies were averaged over the 
Niño 4 region (160°E:150°W, 5°S:5°N) for observations and over 150°E:160°W, 5°S:5°N for CM2.1 
(representing the region of peak zonal wind anomalies in each data set). For the CP data (right 
column), the zonal wind anomalies were averaged over the Nino 3.4 region (170°W:120°E, 5°S:5°N) 
for both CM2.1 and observations.
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Fig. 14 Skewness of tropical Pacific zonal wind stress anomalies in A) 500 years of the CM2.1 control simulation; B) observa-
tions (SODA v2.0.2-4, 1958-2007); C) low variance epochs in CM2.1 and D) high variance epochs in CM2.1. The CM2.1 data are 
divided into two subsets- the “low variance epochs” subset (C) contains data from periods in which the 40-year running mean 
variance of Niño 3 SSTAs ≤ 1.0°C2  while the “high variance epochs” subset (D) contains data from periods in which the 40-year 
running mean variance of Niño 3 SSTAs ≥ 2.0°C2.
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Fig. 15 As in Fig. 16, but for SSTAs. Observational data is from ERSST.v3b, for the period 1951-2010.


