108 research outputs found

    Atomic-level characterization and cilostazol affinity of poly(lactic acid) nanoparticles conjugated with differentially charged hydrophilic molecules

    Get PDF
    Indexación: Scopus.M.F.M. acknowledges support from CONICYT-PFCHA/Doctorado Nacional/2014-21140225. M.M.M. thanks the FONCyT PICT-2015-2191, CONICET PIP 11220110100992, Secyt, Universidad Nacional de Cordoba. C.V. acknowledges support from CONICYT under FONDECYT #1161438 and BASAL Grant FB0807, MECESUP PMI-UAB1301, and H2020-MSCA-RISE-2016 #734801 MAGNAMED. The authors thank the High-Performance Computational Center (CCAD UNC) and Escuela de Ingeniería Civil en Bioinformática (Universidad de Talca) for access to supercomputers.Nanotherapeutics is a promising field for numerous diseases and represents the forefront of modern medicine. In the present work, full atomistic computer simulations were applied to study poly(lactic acid) (PLA) nanoparticles conjugated with polyethylene glycol (PEG). The formation of this complex system was simulated using the reactive polarizable force field (ReaxFF). A full picture of the morphology, charge and functional group distribution is given. We found that all terminal groups (carboxylic acid, methoxy and amino) are randomly distributed at the surface of the nanoparticles. The surface design of NPs requires that the charged groups must surround the surface region for an optimal functionalization/charge distribution, which is a key factor in determining physicochemical interactions with different biological molecules inside the organism. Another important point that was investigated was the encapsulation of drugs in these nanocarriers and the prediction of the polymer-drug interactions, which provided a better insight into structural features that could affect the effectiveness of drug loading. We employed blind docking to predict NP-drug affinity testing on an antiaggregant compound, cilostazol. The results suggest that the combination of molecular dynam ics ReaxFF simulations and blind docking techniques can be used as an explorative tool prior to experiments, which is useful for rational design of new drug delivery systems. © 2018 Matus et al.https://www.beilstein-journals.org/bjnano/articles/9/12

    Therapeutic Strategies Based on Polymeric Microparticles

    Get PDF
    The development of the field of materials science, the ability to perform multidisciplinary scientific work, and the need for novel administration technologies that maximize therapeutic effects and minimize adverse reactions to readily available drugs have led to the development of delivery systems based on microencapsulation, which has taken one step closer to the target of personalized medicine. Drug delivery systems based on polymeric microparticles are generating a strong impact on preclinical and clinical drug development and have reached a broad development in different fields supporting a critical role in the near future of medical practice. This paper presents the foundations of polymeric microparticles based on their formulation, mechanisms of drug release and some of their innovative therapeutic strategies to board multiple diseases

    Superparamagnetic Poly (3-hydroxybutyrate-co-3 hydroxyvalerate) (PHBV) nanoparticles for biomedical applications

    Get PDF
    Indexación: ScieloBackground: The progress in material science and the recent advances in biodegradable/biocompatible polymers and magnetic iron oxide nanoparticles have led to develop innovative diagnostic and therapeutic strategies for diseases based on multifunctional nanoparticles, which include contrast medium for magnetic resonance imaging, agent for hyperthermia and nanocarriers for targeted drug delivery. The aim of this work is to synthesize and characterize superparamagnetic iron oxide (magnetite), and to encapsulate them into poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanoparticles for biomedical applications. Results: The magnetite nanoparticles were confirmed by X-ray diffraction and exhibited a size of 22.3 ± 8.8 nm measured by transmission electron microscopy (TEM). Polymeric PHBV nanoparticles loaded with magnetite (MgNPs) were analyzed using dynamic light scattering and showed a size of 258.6 ± 35.7 nm and a negative zeta potential (-10.8 ± 3.5 mV). The TEM examination of MgNPs exhibited a spherical core-shell structure and the magnetic measurements showed in both, non-encapsulated magnetite and MgNPs, a superparamagnetic performance. Finally, the in vitro studies about the magnetic retention of MgNPs in a segment of small intestine of rats showed an active accumulation in the region of the magnetic field. Conclusions: The results obtained make the MgNPs suitable as potential magnetic resonance imaging contrast agents, also promoting hyperthermia and even as potential nanocarriers for site-specific transport and delivery of drugs. Keywords: hyperthermia, magnetic resonance image (MRI), magnetite, PHBV, polymeric nanoparticles.http://ref.scielo.org/cxt57

    Bone Morphogenetic Protein and its Option as an Alveolar Cleft Treatment

    Get PDF
    Indexación: Scopus; Scielo.Bone morphogenetic protein (BMP) is an endogenous protein that has shown significant effects in the promotion of bone formation. BMP also has been described in the reconstruction of traumatic and pathological bone defects, including alveolar cleft, alveolar ridge augmentation, maxillary sinus elevation, and applications in post-extraction alveolus graft, and peri-implant surgery among others. Despite the advantages associated with the use of BMP, currently is applied in combination with collagen matrices, which has certain properties such as low mechanical resistance and a high burst initial release that diminish its effectiveness in bone formation. In this context, the development of novel systems with greater mechanical resistance and prolonged release of BMP, that lead to chemotaxis of mesenchymal cells, following by its differentiation to osteoblasts represents a major challenge that holds outstanding clinical potential for the stimulation of bone formation. In this paper, we describe the use of BMP for the reconstruction of alveolar clefts, and its advantages being administrated in polymeric microparticles as sustain release system with promising applications in the stimulation of bone formation.http://ref.scielo.org/ps5w6

    Intracellular trafficking and cellular uptake mechanism of PHBV nanoparticles for targeted delivery in epithelial cell lines

    Get PDF
    Indexación: Web of Science; Scopus; Scielo.Background: Nanotechnology is a science that involves imaging, measurement, modeling and a manipulation of matter at the nanometric scale. One application of this technology is drug delivery systems based on nanoparticles obtained from natural or synthetic sources. An example of these systems is synthetized from poly(3-hydroxybutyrate-co-3-hydroxyvalerate), which is a biodegradable, biocompatible and a low production cost polymer. The aim of this work was to investigate the uptake mechanism of PHBV nanoparticles in two different epithelial cell lines (HeLa and SKOV-3). Results: As a first step, we characterized size, shape and surface charge of nanoparticles using dynamic light scattering and transmission electron microscopy. Intracellular incorporation was evaluated through flow cytometry and fluorescence microscopy using intracellular markers. We concluded that cellular uptake mechanism is carried out in a time, concentration and energy dependent way. Our results showed that nanoparticle uptake displays a cell-specific pattern, since we have observed different colocalization in two different cell lines. In HeLa (Cervical cancer cells) this process may occur via classical endocytosis pathway and some internalization via caveolin-dependent was also observed, whereas in SKOV-3 (Ovarian cancer cells) these patterns were not observed. Rearrangement of actin filaments showed differential nanoparticle internalization patterns for HeLa and SKOV-3. Additionally, final fate of nanoparticles was also determined, showing that in both cell lines, nanoparticles ended up in lysosomes but at different times, where they are finally degraded, thereby releasing their contents. Conclusions: Our results, provide novel insight about PHBV nanoparticles internalization suggesting that for develop a proper drug delivery system is critical understand the uptake mechanism.https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-016-0241-

    PCSK9 conjugated liposomes for targeted delivery of paclitaxel to the cancer cell: A proof-of-concept study.

    Get PDF
    Ligand-based targeting of the receptors that are overexpressed explicitly on cancer cells represents an effective drug delivery approach to enhance the chemotherapeutic efficacy. Proprotein convertase subtilisin/kexin type 9 (PCSK9) which is a serine protease enzyme primarily produced by the liver cells, can potentially be used as a targeting ligand. PCSK9 binds to the LDL-r on hepatocytes' surface, leading to endocytosis and endosomal degradation. High LDL-r expression, which is believed to meet the higher demand of the cholesterol and phospholipids to build proliferating cancer cell membrane, ensures selective uptake of the PCSK9 conjugated liposomes. In the present work, the PCSK9 conjugated liposomal system was developed to deliver paclitaxel (PTX) to cancer cells. The protein was conjugated by EDC and NHS in a two-step coupling reaction to the liposomes containing COOH-PEG-COOH lipid. Conjugation was confirmed by NMR, and liposomes were further characterized by SEM and zeta sizer. PCSK9-conjugated liposomes showed high encapsulation efficiency of 69.1% with a diameter of 90.0 ± 4.9 nm. Long-term stability (30 days) study (Zeta potential: -9.88) confirmed excellent constancy and significant drug retention (58.2%). Invitro cytotoxicity and targeting efficiency was explored using MTS assay in human embryonic kidney cells (HEK293), liver hepatocellular cells (HEPG2), and a human colon cancer cell line (HCT116) for 24 h. PCSK9 conjugated liposomes exhibited significantly higher growth inhibition than the unconjugated (control) liposomes in HCT116 cell line (p < 0.001). The novel PCSK9 conjugated liposomes presented potent and precise in vitro anticancer activity and, therefore, are suggested for the first time as a promising targeted delivery system for cancer treatment

    Superparamagnetic Poly (3-hydroxybutyrate-co-3 hydroxyvalerate) (PHBV) nanoparticles for biomedical applications

    Get PDF
    Background: The progress in material science and the recent advances in biodegradable/biocompatible polymers and magnetic iron oxide nanoparticles have led to develop innovative diagnostic and therapeutic strategies for diseases based on multifunctional nanoparticles, which include contrast medium for magnetic resonance imaging, agent for hyperthermia and nanocarriers for targeted drug delivery. The aim of this work is to synthesize and characterize superparamagnetic iron oxide (magnetite), and to encapsulate them into poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanoparticles for biomedical applications. Results: The magnetite nanoparticles were confirmed by X-ray diffraction and exhibited a size of 22.3 \ub1 8.8 nm measured by transmission electron microscopy (TEM). Polymeric PHBV nanoparticles loaded with magnetite (MgNPs) were analyzed using dynamic light scattering and showed a size of 258.6 \ub1 35.7 nm and a negative zeta potential (-10.8 \ub1 3.5 mV). The TEM examination of MgNPs exhibited a spherical core-shell structure and the magnetic measurements showed in both, non-encapsulated magnetite and MgNPs, a superparamagnetic performance. Finally, the in vitro studies about the magnetic retention of MgNPs in a segment of small intestine of rats showed an active accumulation in the region of the magnetic field. Conclusions: The results obtained make the MgNPs suitable as potential magnetic resonance imaging contrast agents, also promoting hyperthermia and even as potential nanocarriers for site-specific transport and delivery of drugs
    corecore