237 research outputs found

    Obligaciones tributarias de una empresa de servicios del distrito del Rímac en el periodo 2020

    Get PDF
    El incumplimiento de las obligaciones tributarias en un problema que existente en el Perú, debido a causas diversas, como la informalidad o a falta de comprensión de la legislación tributaria, lo que conlleva a tener una menor cultura y educación tributaria. Este hecho, perjudica a todos los ciudadanos dado que afecta directamente a la recaudación fiscal, que es uno de los pilares del presupuesto público, generando en el estado, una menor inversión, en su deber de proteger y promover el bienestar general de su población. Si bien, el tema de obligaciones tributarias cuenta con vasta investigación cuantitativa, el enfoque cualitativo de tipo descriptivo de diseño no experimental utilizado en este trabajo, describe y explica las obligaciones tributarias desde el punto de vista de aquellos que conforman una empresa; recogiendo testimonios acerca del conocimiento que tienen sobre tributación, hallando como resultado, opiniones diversas. Y a través de esas opiniones, concluyendo que tanto la cultura como la educación tributaria, son dimensiones importantes en las obligaciones tributarias

    Method for predicting the stress-strain state of the vertical shaft lining at the drift landing section in saliferous rocks

    Get PDF
    The article proposes a method for predicting the stress-strain state of the vertical shaft lining in saliferous rocks at the drift landing section. The paper considers the development of geomechanical processes in the saliferous rock in the landing area, the support is viewed as a two-layer medium: the inner layer is concrete, the outer layer is compensation material. With this in view, the paper solves the problem of continuum mechanics in a spatial setting, taking into account the long-term deformation of salts and the compressibility of the compensation layer. Long-term deformation of saliferous rocks is described using the viscoplastic model of salt deformation into the numerical model, and the crushable foam model to simulate the deformation of the compensation layer. This approach considers all stages of the deformation of the compensation layer material and the development of long-term deformations of saliferous rocks, which makes it possible to increase the reliability of the forecast of the stress-strain state of the vertical shaft lining

    Sigma-2 receptor ligand as a novel method for delivering a SMAC mimetic drug for treating ovarian cancer

    Get PDF
    BACKGROUND: The sigma-2 receptor has been validated as a biomarker for proliferating tumours. Second mitochondria-derived activator of caspase (Smac) is a protein released from mitochondria into the cytosol, leading to apoptosis. In this study, we investigated a sigma-2 ligand as a tumour-targeting drug delivery agent for treating ovarian cancer. METHODS: A sigma-2 ligand, SW 43, was conjugated with a Smac mimetic compound (SMC), SW IV-52s, to form SW III-123. The delivery function of the sigma-2 moiety and cell killing mechanisms of SW III-123 were examined in human ovarian cancer cell lines. RESULTS: SW III-123 internalisation into ovarian cancer cells was mediated by sigma-2 receptors. SW III-123, but not SW IV-52s or SW 43, exhibited potent cytotoxicity in human ovarian cancer cell lines SKOV-3, CaOV-3 and BG-1 after 24-h treatment, suggesting that the sigma-2 ligand successfully delivered SMC into ovarian cancer cells. SW III-123 induced rapid degradation of inhibitor of apoptosis proteins (cIAP1 and cIAP2), accumulation of NF-κB-inducing kinase (NIK) and phosphorylation of NF-κB p65, suggesting that SW III-123 activated both canonical and noncanonical NF-κB pathways in SKOV-3 cells. SW III-123 cleaved caspase-8, -9 and -3. Tumour necrosis factor alpha (TNFα) antibody markedly blocked SW III-123-induced cell death and caspase-3 activity in SKOV-3 cells, indicating that SW III-123 activated both intrinsic and extrinsic apoptotic pathways and induced TNFα-dependent cell death in SKOV-3 cells. CONCLUSION: Sigma-2 ligands are a promising tumour-targeting drug delivery agent. Sigma-2-conjugated SMC exemplifies a novel class of therapeutic drugs for treating ovarian cancer

    Effect of ploidy, recruitment, environmental factors, and tamoxifen treatment on the expression of sigma-2 receptors in proliferating and quiescent tumour cells

    Get PDF
    Recently, we demonstrated that sigma-2 receptors may have the potential to be a biomarker of tumour cell proliferation (Mach et al (1997) Cancer Res57: 156–161). If sigma-2 receptors were a biomarker of tumour cell proliferation, they would be amenable to detection by non-invasive imaging procedures, thus eliminating many of the problems associated with the flow cytometric measures of tumour cell proliferation presently used in the clinic. To be a good biomarker of tumour cell proliferation, the expression of sigma-2 receptors must be essentially independent of many of the biological, physiological, and/or environmental properties that are found in solid tumours. In the investigation reported here, the mouse mammary adenocarcinoma lines, 66 (diploid) and 67 (aneuploid), 9L rat brain tumour cells, and MCF-7 human breast tumour cells were used to study the extent and kinetics of expression of sigma-2 receptors in proliferative (P) and quiescent (Q) tumour cells as a function of species, cell type, ploidy, pH, nutrient depletion, metabolic state, recruitment from the Q-cell compartment to the P-cell compartment, and treatment with tamoxifen. In these experiments, the expression of sigma-2 receptors solely reflected the proliferative status of the tumour cells. None of the biological, physiological, or environmental properties that were investigated had a measurable effect on the expression of sigma-2 receptors in these model systems. Consequently, these data suggest that the proliferative status of tumours and normal tissues can be non-invasively assessed using radiolabelled ligands that selectively bind sigma-2 receptors. © 1999 Cancer Research Campaig

    Anti-tumor activity of splice-switching oligonucleotides

    Get PDF
    Alternative splicing has emerged as an important target for molecular therapies. Splice-switching oligonucleotides (SSOs) modulate alternative splicing by hybridizing to pre-mRNA sequences involved in splicing and blocking access to the transcript by splicing factors. Recently, the efficacy of SSOs has been established in various animal disease models; however, the application of SSOs against cancer targets has been hindered by poor in vivo delivery of antisense therapeutics to tumor cells. The apoptotic regulator Bcl-x is alternatively spliced to express anti-apoptotic Bcl-xL and pro-apoptotic Bcl-xS. Bcl-xL is upregulated in many cancers and is associated with chemoresistance, distinguishing it as an important target for cancer therapy. We previously showed that redirection of Bcl-x pre-mRNA splicing from Bcl-xL to -xS induced apoptosis in breast and prostate cancer cells. In this study, the effect of SSO-induced Bcl-x splice-switching on metastatic melanoma was assessed in cell culture and B16F10 tumor xenografts. SSOs were delivered in vivo using lipid nanoparticles. Administration of nanoparticle with Bcl-x SSO resulted in modification of Bcl-x pre-mRNA splicing in lung metastases and reduced tumor load, while nanoparticle alone or formulated with a control SSO had no effect. Our findings demonstrate in vivo anti-tumor activity of SSOs that modulate Bcl-x pre-mRNA splicing

    Pharmacological Investigations of the Dissociative ‘Legal Highs’ Diphenidine, Methoxphenidine and Analogues

    Get PDF
    1,2-Diarylethylamines including lanicemine, lefetamine, and remacemide have clinical relevance in a range of therapeutic areas including pain management, epilepsy, neurodegenerative disease and depression. More recently 1,2-diarylethylamines have been sold as ‘legal highs’ in a number of different forms including powders and tablets. These compounds are sold to circumvent governmental legislation regulating psychoactive drugs. Examples include the opioid MT-45 and the dissociative agents diphenidine (DPH) and 2-methoxy-diphenidine (2-MXP). A number of fatal and non-fatal overdoses have been linked to abuse of these compounds. As with many ‘legal highs’, little is known about their pharmacology. To obtain a better understanding, the effects of DPH, 2-MXP and its 3- and 4-MeO- isomers, and 2-Cl-diphenidine (2-Cl-DPH) were investigated using binding studies at 46 central nervous system receptors including the N-methyl-D-aspartate receptor (NMDAR), serotonin, dopamine, norepinephrine, histamine, and sigma receptors as well as the reuptake transporters for serotonin, dopamine and norepinephrine. Reuptake inhibition potencies were measured at serotonin, norepinephrine and dopamine transporters. NMDAR antagonism was established in vitro using NMDAR-induced field excitatory postsynaptic potential (fEPSP) experiments. Finally, DPH and 2-MXP were investigated using tests of pre-pulse inhibition of startle (PPI) in rats to determine whether they reduce sensorimotor gating, an effect observed with known dissociative drugs such as phencyclidine (PCP) and ketamine. The results suggest that these 1,2-diarylethylamines are relatively selective NMDAR antagonists with weak off-target inhibitory effects on dopamine and norepinephrine reuptake. DPH and 2-MXP significantly inhibited PPI. DPH showed greater potency than 2-MXP, acting with a median effective dose (ED50) of 9.5 mg/kg, which is less potent than values reported for other commonly abused dissociative drugs such as PCP and ketamine

    Phosphorescent Nanoscale Coordination Polymers as Contrast Agents for Optical Imaging

    Get PDF
    Optical imaging, which uses neither ionizing radiation (as in X-ray computed tomography) nor radioactive materials (as in positron emission tomography or single photon emission computed tomography),[1] has emerged as a powerful imaging modality during the last two decades.[2] Optical imaging has been widely employed for oncological and other applications due to its ability to noninvasively differentiate between diseased (e.g., tumor) and healthy tissues based on differential dye accumulations.[3] The need for relatively high (up to ~µM) concentrations of dyes in optical imaging, however, limits its application in many areas, such as detecting low concentrations of biological targets. For example, many biomarkers are overexpressed in the nM concentrations in diseased tissues,[4] and cannot be readily visualized by optical imaging. Dye-loaded nanoparticles represent a logical solution to lowering the detection limit due to their ability to carry a large payload of dye molecules as well as to target certain cell types by conjugation to affinity molecules. Luminescent quantum dots have indeed been extensively explored as bright and stable contrast agents for optical imaging.[5] The non-degradable nature of and the use of toxic elements in many quantum dot formulations however limit their applications in many areas. Most of fluorescent dye molecules, on the other hand, have small Stokes shifts and tend to have a significant overlap between absorption and fluorescent emission spectra. As a result, these fluorescence dyes will suffer from severe self-quenching if they are brought into close proximity with each other, as in nanoparticles with high dye loadings

    Alzheimer's Therapeutics Targeting Amyloid Beta 1-42 Oligomers II: Sigma-2/PGRMC1 Receptors Mediate Abeta 42 Oligomer Binding and Synaptotoxicity

    Get PDF
    Amyloid beta (Abeta) 1–42 oligomers accumulate in brains of patients with Mild Cognitive Impairment (MCI) and disrupt synaptic plasticity processes that underlie memory formation. Synaptic binding of Abeta oligomers to several putative receptor proteins is reported to inhibit long-term potentiation, affect membrane trafficking and induce reversible spine loss in neurons, leading to impaired cognitive performance and ultimately to anterograde amnesia in the early stages of Alzheimer's disease (AD). We have identified a receptor not previously associated with AD that mediates the binding of Abeta oligomers to neurons, and describe novel therapeutic antagonists of this receptor capable of blocking Abeta toxic effects on synapses in vitro and cognitive deficits in vivo. Knockdown of sigma-2/PGRMC1 (progesterone receptor membrane component 1) protein expression in vitro using siRNA results in a highly correlated reduction in binding of exogenous Abeta oligomers to neurons of more than 90%. Expression of sigma-2/PGRMC1 is upregulated in vitro by treatment with Abeta oligomers, and is dysregulated in Alzheimer's disease patients' brain compared to age-matched, normal individuals. Specific, high affinity small molecule receptor antagonists and antibodies raised against specific regions on this receptor can displace synthetic Abeta oligomer binding to synaptic puncta in vitro and displace endogenous human AD patient oligomers from brain tissue sections in a dose-dependent manner. These receptor antagonists prevent and reverse the effects of Abeta oligomers on membrane trafficking and synapse loss in vitro and cognitive deficits in AD mouse models. These findings suggest sigma-2/PGRMC1 receptors mediate saturable oligomer binding to synaptic puncta on neurons and that brain penetrant, small molecules can displace endogenous and synthetic oligomers and improve cognitive deficits in AD models. We propose that sigma-2/PGRMC1 is a key mediator of the pathological effects of Abeta oligomers in AD and is a tractable target for small molecule disease-modifying therapeutics
    corecore