1,463 research outputs found
HETE-II and the Interplanetary Network
The FREGATE experiment aboard HETE-II has been successfully integrated into
the Third Interplanetary Network (IPN) of gamma-ray burst detectors. We show
how HETE's timing has been verified in flight, and discuss what HETE can do for
the IPN and vice-versa.Comment: To appear in the proceedings of the conference on Gamma-Ray Burst and
Afterglow Astronomy 2001: A Workshop Celebrating the First Year of the HETE
Mission, to be published by AIP. Figures must be downloaded and printed
separatel
WASP-4b Arrived Early for the TESS Mission
The Transiting Exoplanet Survey Satellite (TESS) recently observed 18
transits of the hot Jupiter WASP-4b. The sequence of transits occurred 81.6
11.7 seconds earlier than had been predicted, based on data stretching
back to 2007. This is unlikely to be the result of a clock error, because TESS
observations of other hot Jupiters (WASP-6b, 18b, and 46b) are compatible with
a constant period, ruling out an 81.6-second offset at the 6.4 level.
The 1.3-day orbital period of WASP-4b appears to be decreasing at a rate of
milliseconds per year. The apparent period change
might be caused by tidal orbital decay or apsidal precession, although both
interpretations have shortcomings. The gravitational influence of a third body
is another possibility, though at present there is minimal evidence for such a
body. Further observations are needed to confirm and understand the timing
variation.Comment: AJ accepte
HETE Observations of the Gamma-Ray Burst GRB030329: Evidence for an Underlying Soft X-ray Component
An exceptionally intense gamma-ray burst, GRB030329, was detected and
localized by the instruments on board the High Energy Transient Explorer
satellite (HETE) at 11:37:14 UT on 29 March 2003. The burst consisted of two
\~10s pulses of roughly equal brightness and an X-ray tail lasting >100s. The
energy fluence in the 30-400 keV energy band was 1.08e-4 erg/cm2, making
GRB030329 one of the brightest GRBs ever detected. Communication of a 2 arcmin
error box 73 minutes after the burst allowed the rapid detection of a
counterpart in the optical, X-ray, radio and the ensuing discovery of a
supernova with most unusual characteristics. Analyses of the burst lightcurves
reveal the presence of a distinct, bright, soft X-ray component underlying the
main GRB: the 2-10 keV fluence of this component is ~7e-6 erg/cm2. The main
pulses of GRB030329 were preceded by two soft, faint, non-thermal bumps. We
present details of the HETE observations of GRB030329.Comment: 22 pages, 5 figures, to be published in ApJ 617, no. 2 (10 December
2004). Referee comments have been incorporated; results of improved spectral
analysis are include
Global Characteristics of X-Ray Flashes and X-Ray-Rich GRBs Observed by HETE-2
We describe and discuss the global properties of 45 gamma-ray bursts (GRBs)
observed by HETE-2 during the first three years of its mission, focusing on the
properties of X-Ray Flashes (XRFs) and X-ray-rich GRBs (XRRs). We find that the
numbers of XRFs, XRRs, and GRBs are comparable. We find that the durations and
the sky distributions of XRFs and XRRs are similar to those of GRBs. We also
find that the spectral properties of XRFs and XRRs are similar to those of
GRBs, except that the values of the peak energy of the
burst spectrum in , the peak energy flux \Fp, and the energy
fluence of XRFs are much smaller -- and those of XRRs are smaller -- than
those of GRBs. Finally, we find that the distributions of all three kinds of
bursts form a continuum in the [(2-30 keV),(30-400) keV]-plane, the
[(2-400 keV), ]-plane, and the [(50-300 keV),
]-plane. These results provide strong evidence that all three
kinds of bursts arise from the same phenomenon.Comment: 33 pages, 15 figures, submitted to Ap
GRB970228 and a class of GRBs with an initial spikelike emission
(Shortened) The Swift and HETE-2 discovery of an afterglow associated
possibly with short GRBs opened the new problematic of their nature and
classification. This has been further enhanced by the GRB060614 observation and
by a re-analysis of the BATSE catalog leading to the identification of a new
GRB class with "an occasional softer extended emission lasting tenths of
seconds after an initial spikelike emission". We plan: a) to fit this new class
of "hybrid" sources within our "canonical GRB" scenario, where all GRBs are
generated by a "common engine" (i.e. the gravitational collapse to a black
hole); b) to propose GRB970228 as the prototype of the such a class. We analyze
BeppoSAX data on GRB970228 in the 40-700 keV and 2-26 keV energy bands within
the "fireshell" model. We find that GRB970228 is a "canonical GRB", like e.g.
GRB050315, with the main peculiarity of a particularly low CircumBurst Medium
(CBM) average density n_{cbm}~10^{-3} #/cm^3. We also simulate the light curve
corresponding to a rescaled CBM density profile with n_{cbm}=1 #/cm^3. From
such a comparison it follows that the total time-integrated luminosity is a
faithful indicator of the GRB nature, contrary to the peak luminosity which is
merely a function of the CBM density. We call attention on discriminating the
short GRBs between the "genuine" and the "fake" ones. The "genuine" ones are
intrinsically short, with baryon loading B \la 10^{-5}, as stated in our
original classification. The "fake" ones, characterized by an initial spikelike
emission followed by an extended emission lasting tenths of seconds, have a
baryon loading 10^{-4} \la B \leq 10^{-2}. They are observed as such only due
to an underdense CBM consistent with a galactic halo environment which deflates
the afterglow intensity.Comment: 4 pages, 4 figures, to appear on A&A Letter
Reactive control of autonomous drones
Aerial drones, ground robots, and aquatic rovers enable mobile applications that no other technology can realize with comparable flexibility and costs. In existing platforms, the low-level control enabling a drone's autonomous movement is currently realized in a time-triggered fashion, which simplifies implementations. In contrast, we conceive a notion of reactive control that supersedes the time-triggered approach by leveraging the characteristics of existing control logic and of the hardware it runs on. Using reactive control, control decisions are taken only upon recognizing the need to, based on observed changes in the navigation sensors. As a result, the rate of execution dynamically adapts to the circumstances. Compared to time-triggered control, this allows us to: i) attain more timely control decisions, ii) improve hardware utilization, iii) lessen the need to overprovision control rates. Based on 260+ hours of real-world experiments using three aerial drones, three different control logic, and three hardware platforms, we demonstrate, for example, up to 41% improvements in control accuracy and up to 22% improvements in flight time
Probing the Nature of Short Swift Bursts via Deep INTEGRAL Monitoring of GRB 050925
We present results from Swift, XMM-Newton, and deep INTEGRAL monitoring in
the region of GRB 050925. This short Swift burst is a candidate for a newly
discovered soft gamma-ray repeater (SGR) with the following observational burst
properties: 1) galactic plane (b=-0.1 deg) localization, 2) 150 msec duration,
and 3) a blackbody rather than a simple power-law spectral shape (with a
significance level of 97%). We found two possible X-ray counterparts of GRB
050925 by comparing the X-ray images from Swift XRT and XMM-Newton. Both X-ray
sources show the transient behavior with a power-law decay index shallower than
-1. We found no hard X-ray emission nor any additional burst from the location
of GRB 050925 in ~5 Ms of INTEGRAL data. We discuss about the three BATSE short
bursts which might be associated with GRB 050925, based on their location and
the duration. Assuming GRB 050925 is associated with the H II regions (W 58) at
the galactic longitude of l=70 deg, we also discuss the source frame properties
of GRB 050925.Comment: 13 pages, 13 figures, accepted for publication in ASR special issue
on Neutron Stars and Gamma Ray Bursts, full resolution of Fig 5 is available
at
http://asd.gsfc.nasa.gov/Takanori.Sakamoto/GRB050925/integral_ibis_images.ep
- âŠ