306 research outputs found

    The Pacific Decadal Oscillation modulates tropical cyclone days on the interannual timescale in the North Pacific Ocean

    Get PDF
    The North Pacific Ocean is the most active region on our planet in terms of tropical cyclone (TC) activity. These storms are responsible for numerous fatalities and economic damages, affecting the livelihood of those living in the impacted areas. Historically the examination of TCs in the North Pacific Ocean has been performed separately for its two main sub-basins: the West North Pacific and the East North Pacific. Here, we consider the TC activity in the North Pacific as a single basin and examine the climate processes responsible for its number of TC days. We show that the Pacific Decadal Oscillation modulates the number of TC days in the North Pacific Ocean through its connection to the sea surface temperature. The insights from this work will advance the understanding of the climate processes responsible for these storms, and will provide valuable information toward our preparation and adaptation efforts on long timescales

    Climatology of Flooding in the United States

    Get PDF
    Flood losses in the United States have increased dramatically over the course of the past century, averaging US$7.96 billion in damages per year for the 30-year period ranging from 1985 to 2014. In terms of human fatalities, floods are the second largest weather-related hazard in the United States, causing approximately 80 deaths per year over the same period. Given the wide-reaching impacts of flooding across the United States, the evaluation of flood-generating mechanisms and of the drivers of changing flood hazard are two areas of active research. Flood frequency analysis has traditionally been based on statistical analyses of the observed flood distributions that rarely distinguish among physical flood-generating processes. However, recent scientific advances have shown that flood frequency distributions are often characterized by “mixed populations” arising from multiple flood-generating mechanisms, which can be challenging to disentangle. Flood events can be driven by a variety of physical mechanisms, including rain and snowmelt, frontal systems, monsoons, intense tropical cyclones, and more generic cyclonic storms. Temporal changes in the frequency and magnitude of flooding have also been the subject of a large body of work in recent decades. The science has moved from a focus on the detection of trends and shifts in flood peak distributions towards the attribution of these changes, with particular emphasis on climatic and anthropogenic factors, including urbanization and changes in agricultural practices. A better understanding of these temporal changes in flood peak distributions, as well as of the physical flood-generating mechanisms, will enable us to move forward with the estimation of future flood design values in the context of both climatic and anthropogenic change

    Intense precipitation events associated with landfalling tropical cyclones in response to a warmer climate and increased CO2

    Get PDF
    In this work the authors investigate possible changes in the intensity of rainfall events associated 28 with tropical cyclones (TCs) under idealized forcing scenarios, including a uniformly warmer climate, with a special focus on landfalling storms. A new set of experiments designed within the U.S. CLIVAR Hurricane Working Group allows disentangling the relative role of changes in atmospheric carbon dioxide from that played by sea surface temperature (SST) in changing the amount of precipitation associated with TCs in a warmer world. Compared to the present day simulation, we found an increase in TC precipitation under the scenarios involving SST increases. On the other hand, in a CO2 doubling-only scenario, the changes in TC rainfall are small and we found that, on average, TC rainfall tends to decrease compared to the present day climate. The results of this study highlight the contribution of landfalling TCs to the projected increase in the precipitation changes affecting the tropical coastal regions

    Sensitivity of Tropical Cyclone Rainfall to Idealized Global Scale Forcings

    Get PDF
    Heavy rainfall and flooding associated with tropical cyclones (TCs) are responsible for a large number of fatalities and economic damage worldwide. Despite their large socio-economic impacts, research into heavy rainfall and flooding associated with TCs has received limited attention to date, and still represents a major challenge. Our capability to adapt to future changes in heavy rainfall and flooding associated with TCs is inextricably linked to and informed by our understanding of the sensitivity of TC rainfall to likely future forcing mechanisms. Here we use a set of idealized high-resolution atmospheric model experiments produced as part of the U.S. CLIVAR Hurricane Working Group activity to examine TC response to idealized global-scale perturbations: the doubling of CO2, uniform 2K increases in global sea surface temperature (SST), and their combined impact. As a preliminary but key step, daily rainfall patterns of composite TCs within climate model outputs are first compared and contrasted to the observational records. To assess similarities and differences across different regions in response to the warming scenarios, analyses are performed at the global and hemispheric scales and in six global TC ocean basins. The results indicate a reduction in TC daily precipitation rates in the doubling CO2 scenario (on the order of 5% globally), and an increase in TC rainfall rates associated with a uniform increase of 2K in SST (both alone and in combination with CO2 doubling; on the order of 10-20% globally)

    Precipitation Type Specific Radar Reflectivity-Rain Rate Relationships for Warsaw, Poland

    Get PDF
    Penelitian ini bertujuan untuk mengetahui peningkatan penguasaan konsep dan kemampuan literasi sains siswa dengan menggunakan model pembelajaran kontekstual berbantuan multimedia. Metode dan desain penelitian yang digunakan adalah quasi experiment dengan pretest-posttest control group design. Subjek penelitiannya adalah kelas XI di kabupaten Subang, Jawa-Barat. Hasil penelitian menunjukkan Model Pembelajaran Kontekstual berbantuan multimedia secara signifikan mampu meningkatkan penguasaan konsep dan kemampuan literasi sains siswa. Peningkatan penguasaan konsep siswa dengan nilai N-Gain 0.50 (kategori sedang) untuk kelas eksperimen dan 0,30 (kategori sedang) untuk kelas kontrol. Peningkatan kemampuan literasi sains siswa dengan nilai N-Gain 0.45 (kategori sedang) untuk kelas eksperimen dan 0,30 (kategori sedang) untuk kelas kontrol. This study aims to determine the concepts mastery and skills increase scientific literacy of students by using multimedia-assisted contextual learning model. The method used quasi experiment with pretest-posttest control group design. Subjects of study are class XI in Subang districts, West-Java. The result of study showed that contextual model’s aided by multimedia significantly enhance student’s concepts mastery and skills scientific literacy. The enhancement of student’s concepts mastery with N-Gain value is 0.50 (medium category) for experiment class and 0,30 (medium category) for control class. The enhancement of student's skills scientific literacy with N-Gain value is 0.45 (medium category) for experiment class and 0,30 (medium category) for control class

    Protective effect of aerobic physical activity on sleep behavior in breast cancer survivors

    Get PDF
    Hypotheses.Sleep disorders are associated with an increased risk of cancer, including breast cancer (BC). Physical activity (PA) can produce beneficial effects on sleep. Study design.We designed a randomized controlled trial to test the effect of 3 months of physical activity on sleep and circadian rhythm activity level evaluated by actigraphy. Methods.40 BC women, aged 35-70 years, were randomized into an intervention (IG) and a control group (CG). IG performed a 3 month of aerobic exercise. At baseline and after 3 months, the following parameters were evaluated both for IG and CG: anthropometric and body composition measurements, energy expenditure and motion level; sleep parameters (Actual Sleep Time-AST, Actual Wake Time-AWT, Sleep Efficiency-SE, Sleep Latency-SL, Mean Activity Score-MAS, Movement and Fragmentation Index-MFI and Immobility Time-IT) and activity level circadian rhythm using the Actigraph Actiwatch. Results.The CG showed a deterioration of sleep, whereas the IG showed a stable pattern. In the CG the SE, AST and IT decreased and the AWT, SL, MAS and MFI increased. In the IG, the SE, IT, AWT, SL, and MAS showed no changes and AST and MFI showed a less pronounced change in the IG than in the CG. The rhythmometric analysis revealed a significant circadian rhythm in two groups. After 3 months of PA, IG showed reduced fat mass %, while CG had improved weight and BMI. Conclusion. Physical activity may be beneficial against sleep disruption. Indeed, PA prevented sleep worsening in IG. PA can represent an integrative intervention therapy able to modify sleep behaviour

    A systematic review of climate change science relevant to Australian design flood estimation

    Get PDF
    In response to flood risk, design flood estimation is a cornerstone of planning, infrastructure design, setting of insurance premiums, and emergency response planning. Under stationary assumptions, flood guidance and the methods used in design flood estimation are firmly established in practice and mature in their theoretical foundations, but under climate change, guidance is still in its infancy. Human-caused climate change is influencing factors that contribute to flood risk such as rainfall extremes and soil moisture, and there is a need for updated flood guidance. However, a barrier to updating flood guidance is the translation of the science into practical application. For example, most science pertaining to historical changes to flood risk focuses on examining trends in annual maximum flood events or the application of non-stationary flood frequency analysis. Although this science is valuable, in practice, design flood estimation focuses on exceedance probabilities much rarer than annual maximum events, such as the 1 % annual exceedance probability event or even rarer, using rainfall-based procedures, at locations where there are few to no observations of streamflow. Here, we perform a systematic review to summarize the state-of-the-art understanding of the impact of climate change on design flood estimation in the Australian context, while also drawing on international literature. In addition, a meta-analysis, whereby results from multiple studies are combined, is conducted for extreme rainfall to provide quantitative estimates of possible future changes. This information is described in the context of contemporary design flood estimation practice to facilitate the inclusion of climate science into design flood estimation practice.</p

    Primary DNA damage and genetic polymorphisms for CYP1A1, EPHX and GSTM1 in workers at a graphite electrode manufacturing plant

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The results of a cross-sectional study aimed to evaluate whether genetic polymorphisms (biomarkers of susceptibility) for <it>CYP1A1</it>, <it>EPHX </it>and <it>GSTM1 </it>genes that affect polycyclic aromatic hydrocarbons (PAH) activation and detoxification might influence the extent of primary DNA damage (biomarker of biologically effective dose) in PAH exposed workers are presented. PAH-exposure of the study populations was assessed by determining the concentration of 1-hydroxypyrene (1OHP) in urine samples (biomarker of exposure dose).</p> <p>Methods</p> <p>The exposed group consisted of workers (n = 109) at a graphite electrode manufacturing plant, occupationally exposed to PAH. Urinary 1OHP was measured by HPLC. Primary DNA damage was evaluated by the alkaline comet assay in peripheral blood leukocytes. Genetic polymorphisms for <it>CYP1A1</it>, <it>EPHX</it> and <it>GSTM1</it> were determined by PCR or PCR/RFLP analysis.</p> <p>Results</p> <p>1OHP and primary DNA damage were significantly higher in electrode workers compared to reference subjects. Moreover, categorization of subjects as normal or outlier highlighted an increased genotoxic risk OR = 2.59 (CI95% 1.32–5.05) associated to exposure to PAH. Polymorphisms in <it>EPHX</it> exons 3 and 4 was associated to higher urinary concentrations of 1OHP, whereas none of the genotypes analyzed (<it>CYP1A1</it>, <it>EPHX</it>, and <it>GSTM1</it>) had any significant influence on primary DNA damage as evaluated by the comet assay.</p> <p>Conclusion</p> <p>The outcomes of the present study show that molecular epidemiology approaches (i.e. cross-sectional studies of genotoxicity biomarkers) can play a role in identifying common genetic risk factors, also attempting to associate the effects with measured exposure data. Moreover, categorization of subjects as normal or outlier allowed the evaluation of the association between occupational exposure to PAH and DNA damage highlighting an increased genotoxic risk.</p
    • …
    corecore