1,072 research outputs found

    The preparation of the Shutdown Dose Rate experiment for the next JET Deuterium-Tritium campaign

    Get PDF
    The assessment of the Shutdown Dose Rate (SDR) due to neutron activation is a major safety issue for fusion devices and in the last decade several benchmark experiments have been conducted at JET during Deuterium-Deuterium experiments for the validation of the numerical tools used in ITER nuclear analyses. The future Deuterium-Tritium campaign at JET (DTE2) will provide a unique opportunity to validate the codes under ITER-relevant conditions through the comparison between numerical predictions and measured quantities (C/E). For this purpose, a novel SDR experiment, described in the present work, is in preparation in the frame of the WPJET3-NEXP subproject within EUROfusion Consortium. The experimental setup has been accurately designed to reduce measurement uncertainties; spherical air-vented ionization chambers (ICs) will be used for on-line ex-vessel decay gamma dose measurements during JET shutdown following DT operations and activation foils have been selected for measuring the neutron fluence near ICs during operations. Active dosimeters (based on ICs) have been calibrated over a broad energy range (from about 30 keV to 1.3 MeV) with X and gamma reference beam qualities. Neutron irradiation tests confirmed the capability of active dosimeters of performing on-line decay gamma dose rate measurements, to follow gamma dose decay at the end of neutron irradiation as well as insignificant activation of the ICs

    Characteristics of the injected ion beam in the ECR charge breeder 1+n+1^{+}\to n^{+}

    Get PDF
    Different ion species (rare gases, alkali, metallic) have been injected on the axis of the MINIMAFIOS - 10 GHz - Electron Cyclotron Resonance Ion Source which is the basics of the 1+ -> n+ method, special attention have been paid to the optics of the incoming beam for the validation of the 1+ -> n+ method for the SPIRAL project (Radioactive Ion Beam facility). The capture of the incoming ion beam by the ECR plasma depends, first, on the relative energy of the incoming ions with respect to the average ion energy in the plasma, and secondly, on the optics of the injection line. The efficiency of the process when varying the potential V n+ of the MINIMAFIOS source with respect to the potential V 1+ applied to the 1+ source (DV=V n+ -V 1+ ) is an image of the energy dispersion of the 1+ beam. 1+ -> n+ spectra efficiencies, DV efficiency dependence for the most efficient charge state obtained, and measured primary beam emittances are given for the Ar, Rb, Pb, Cr. Highest efficiencies obtained are respectively Ar1+ -> Ar8+ : 8.7 %, Rb1+ -> Rb15+ : 5.5 %, Pb 1+ -> Pb 22+ : 4.8 % , Cr 1+ -> Cr 12+ : 3.5 %. Last results obtained are given for Sulfur and Uranium

    Using mass-flow controllers for obtaining extremely stable ECR ion source beams

    Get PDF
    Original publication available at http://www.jacow.orgInternational audienceBeam stability and reproducibility is of paramount importance in applications requiring precise control of implanted radiation dose, like in the case of Hadrontherapy. The beam intensity over several weeks or months should be kept constant. Moreover, the timing for changing the nature of the beam and, as a consequence, the tuning of the source should be minimized. Standard valves usually used in conjunction of ECR ion sources have the disadvantage of controlling the conductance, which can vary significantly with external conditions, like ambient temperature and inlet pressure of the gas. The use of flow controllers is the natural way for avoiding these external constraints. In this contribution we present the results obtained using a new model of Mass-flow controller in the source Supernanogan, for production of C4+ and H3+ beams. Extremely stable beams (± 2.5%) without retuning of the source over several weeks could be obtained. The reproducibility of the source tuning parameters could also be demonstrated

    Neutronics assessment of EU DEMO alternative divertor configurations

    Get PDF
    Abstract As a demonstration fusion power plant, EU DEMO has to prove the maturity of fusion technology and its viability for electricity production. The central requirements for DEMO rest on its capability to generate significant net electric power to the grid (300 MW to 500 MW) safely and consistently. Plant availability and lifetime will approach that of a commercial fusion power plant. Operating at such regimes presents many complex challenges, of which one is plasma exhaust. To mitigate the risk that the implementation in preceding experimental devices, namely ITER, does not extrapolate to the requirement of DEMO, alternative solutions must be sought. The investigation of alternative divertor configurations was born out of this motive, seeking to resolve a 'critical' challenge for the realisation of DEMO. In this paper, we study the neutronics performance of three concepts: Single Null (SN), Super-X (SX) and X-divertor (XD). This is the first time a preliminary analysis of alternative configurations to the SN baseline has been performed. The shielding proposals and design recommendations presented herein should be integrated with other engineering and physics constraints in future iterations of the chosen divertor concept

    Direct mass measurements of 19B, 22C, 29F, 31Ne, 34Na and other light exotic nuclei

    Full text link
    We report on direct time-of-flight based mass measurements of 16 light neutron-rich nuclei. These include the first determination of the masses of the Borromean drip-line nuclei 19^{19}B, 22^{22}C and 29^{29}F as well as that of 34^{34}Na. In addition, the most precise determinations to date for 23^{23}N and 31^{31}Ne are reported. Coupled with recent interaction cross-section measurements, the present results support the occurrence of a two-neutron halo in 22^{22}C, with a dominant ν2s1/22\nu2s_{1/2}^2 configuration, and a single-neutron halo in 31^{31}Ne with the valence neutron occupying predominantly the 2p3/2p_{3/2} orbital. Despite a very low two-neutron separation energy the development of a halo in 19^{19}B is hindered by the 1d5/22d_{5/2}^2 character of the valence neutrons.Comment: 5 page
    corecore