53 research outputs found

    MiRNA-200C expression in Fanconi anemia pathway functionally deficient lung cancers

    Get PDF
    The Fanconi Anemia (FA) pathway is essential for human cells to maintain genomic integrity following DNA damage. This pathway is involved in repairing damaged DNA through homologous recombination. Cancers with a defective FA pathway are expected to be more sensitive to cross-link based therapy or PARP inhibitors. To evaluate downstream effectors of the FA pathway, we studied the expression of 734 different micro RNAs (miRNA) using NanoString nCounter miRNA array in two FA defective lung cancer cells and matched control cells, along with two lung tumors and matched non-tumor tissue samples that were deficient in the FA pathway. Selected miRNA expression was validated with real-time PCR analysis. Among 734 different miRNAs, a cluster of microRNAs were found to be up-regulated including an important cancer related micro RNA, miR-200C. MiRNA-200C has been reported as a negative regulator of epithelial-mesenchymal transition (EMT) and inhibits cell migration and invasion by promoting the upregulation of E-cadherin through targeting ZEB1 and ZEB2 transcription factors. miRNA-200C was increased in the FA defective lung cancers as compared to controls. AmpliSeq analysis showed significant reduction in ZEB1 and ZEB2 mRNA expression. Our findings indicate the miRNA-200C potentially play a very important role in FA pathway downstream regulation

    Expression of a Mutant p53 Results in an Age-Related Demographic Shift in Spontaneous Lung Tumor Formation in Transgenic Mice

    Get PDF
    BACKGROUND:Mutations in the P53 gene are among the most common genetic abnormalities in human lung cancer. Codon 273 in the sequence-specific DNA binding domain is one of the most frequently mutated sites. METHODOLOGY:To investigate the role of mutant p53 in lung tumorigenesis, a lung specific p53(273H) transgenic mouse model was developed. Rates of lung cancer formation in the transgenic animals and their littermates were evaluated by necropsy studies performed in progressive age cohorts ranging from 4 to 24 months. In order to establish the influence of other common genetic abnormalities in lung tumor formation in the animals, K-Ras gene mutation and p16INK4a (p16) promoter methylation were evaluated in a total of 281 transgenic mice and 189 non-transgenic littermates. PRINCIPAL FINDINGS:At the age extremes of 4-12 and 22-24 months no differences were observed, with very low prevalence of tumors in animals younger than 12 months, and a relatively high prevalence at age 22 months or older. However, the transgenic mice had a significant higher lung tumor rate than their non-transgenic counterparts during the age of 13-21 months, suggesting an age-related shift in lung tumor formation induced by the lung-specific expression of the human mutant p53. Histopathology suggested a more aggressive nature for the transgenic tumors. Older mice (>13 months) had a significantly higher rate of p16 promoter methylation (17% v 82%). In addition, an age related effect was observed for K-Ras codons 12 or 13 mutations, but not for codon 61 mutations. CONCLUSIONS/SIGNIFICANCE:These results would suggest that the mutant p53(273H) contributes to an acceleration in the development of spontaneous lung tumors in these mice. Combination with other genetic and epigenetic alterations occurring after the age of 13 months is intimately linked to its oncogenic potential

    Phase II randomized, double-blind, placebo-controlled study of tivantinib in men with asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer (mCRPC)

    Get PDF
    Background Tivantinib is a non-ATP competitive inhibitor of c-MET receptor tyrosine kinase that may have additional cytotoxic mechanisms including tubulin inhibition. Prostate cancer demonstrates higher c-MET expression as the disease progresses to more advanced stages and to a castration resistant state. Methods 80 patients (pts) with asymptomatic or minimally symptomatic mCRPC were assigned (2:1) to either tivantinib 360 mg PO BID or placebo (P). The primary endpoint was progression free survival (PFS). Results Of the 80 pts. enrolled, 78 (52 tivantinib, 26 P) received treatment and were evaluable. Median follow up is 8.9 months (range: 2.3 to 19.6 months). Patients treated with tivantinib had significantly better PFS vs. those treated with placebo (medians: 5.5 mo vs 3.7 mo, respectively; HR = 0.55, 95% CI: 0.33 to 0.90; p = 0.02). Grade 3 febrile neutropenia was seen in 1 patient on tivantinib while grade 3 and 4 neutropenia was recorded in 1 patient each on tivantinib and placebo. Grade 3 sinus bradycardia was recorded in two men on the tivantinib arm. Conclusions Tivantinib has mild toxicity and improved PFS in men with asymptomatic or minimally symptomatic mCRPC

    A Randomized Phase II Study to Assess the Efficacy of Pemetrexed or Sunitinib or Pemetrexed Plus Sunitinib in the Second-Line Treatment of Advanced Non–Small-Cell Lung Cancer

    Get PDF
    Second-line chemotherapy for advanced non-small cell lung cancer (NSCLC) improves survival modestly but new strategies are needed. This trial was designed to evaluate an antivascular endothelial growth factor strategy with or without standard chemotherapy in previously treated NSCLC

    Randomized Phase II Trial of Erlotinib Alone or With Carboplatin and Paclitaxel in Patients Who Were Never or Light Former Smokers With Advanced Lung Adenocarcinoma: CALGB 30406 Trial

    Get PDF
    Erlotinib is clinically effective in patients with non–small-cell lung cancer (NSCLC) who have adenocarcinoma, are never or limited former smokers, or have EGFR mutant tumors. We investigated the efficacy of erlotinib alone or in combination with chemotherapy in patients with these characteristics

    A novel mutation in the tyrosine kinase domain of ERBB2 in hepatocellular carcinoma

    Get PDF
    BACKGROUND: Several studies showed that gain-of-function somatic mutations affecting the catalytic domain of EGFR in non-small cell lung carcinomas were associated with response to gefitinib and erlotinib, both EGFR-tyrosine kinase inhibitors. In addition, 4% of non-small cell lung carcinomas were shown to have ERBB2 mutations in the kinase domain. In our study, we sought to determine if similar respective gain-of-function EGFR and ERBB2 mutations were present in hepatoma and/or biliary cancers. METHODS: We extracted genomic DNA from 40 hepatoma (18) and biliary cancers (22) samples, and 44 adenocarcinomas of the lung, this latter as a positive control for mutation detection. We subjected those samples to PCR-based semi-automated double stranded nucleotide sequencing targeting exons 18–21 of EGFR and ERBB2. All samples were tested against matched normal DNA. RESULTS: We found 11% of hepatoma, but no biliary cancers, harbored a novel ERBB2 H878Y mutation in the activating domain. CONCLUSION: These newly described mutations may play a role in predicting response to EGFR-targeted therapy in hepatoma and their role should be explored in prospective studies

    RET

    No full text
    • …
    corecore