140 research outputs found

    The kinematic Sunyaev-Zel'dovich effect of the large-scale structure (II): the effect of modified gravity

    Get PDF
    The key to understand the nature of dark energy relies in our ability to probe the distant Universe. In this framework, the recent detection of the kinematic Sunyaev-Zel'dovich (kSZ) effect signature in the cosmic microwave background obtained with the South Pole Telescope (SPT) is extremely useful since this observable is sensitive to the high-redshift diffuse plasma. We analyse a set of cosmological hydrodynamical simulation with 4 different realisations of a Hu & Sawicki f(R)f(R) gravity model, parametrised by the values of fR,0=(0,106,105,104)\overline{f}_{\rm R,0}=(0,-10^{-6},-10^{-5},-10^{-4}), to compute the properties of the kSZ effect due to the ionized Universe and how they depend on fR,0\overline{f}_{\rm R,0} and on the redshift of reionization, zrez_{\rm re}. In the standard General Relativity limit (fR,0\overline{f}_{\rm R,0}=0) we obtain an amplitude of the kSZ power spectrum of D3000kSZ=4.1\mathcal{D}^{\rm kSZ}_{3000}=4.1\,μ\muK2^2 (zrez_{\rm re}=8.8), close to the +1σ+1\sigma limit of the D3000kSZ=(2.9±1.3)\mathcal{D}^{\rm kSZ}_{3000}=(2.9\pm1.3)\,μ\muK2^2 measurement by SPT. This corresponds to an upper limit on the kSZ contribute from patchy reionization of D3000kSZ,patchy<0.9\mathcal{D}^{\rm kSZ,patchy}_{3000}<0.9\,μ\muK2^2 (95 per cent confidence level). Modified gravity boosts the kSZ signal by about 3, 12 and 50 per cent for fR,0=(106,105,104)\overline{f}_{\rm R,0}=(-10^{-6},-10^{-5},-10^{-4}), respectively, with almost no dependence on the angular scale. This means that with modified gravity the limits on patchy reionization shrink significantly: for fR,0=105\overline{f}_{\rm R,0}=-10^{-5} we obtain D3000kSZ,patchy<0.4\mathcal{D}^{\rm kSZ,patchy}_{3000}<0.4\,μ\muK2^2. Finally, we provide an analytical formula for the scaling of the kSZ power spectrum with zrez_{\rm re} and fR,0\overline{f}_{\rm R,0} at different multipoles: at =3000\ell=3000 we obtain D3000kSZzre0.24(1+fR,0)41\mathcal{D}^{\rm kSZ}_{3000}\propto z_{\rm re}^{0.24}\left(1+\sqrt{\left|\overline{f}_{\rm R,0}\right|}\right)^{41}.Comment: 11 pages, 5 figures, 2 table

    Studying the Warm Hot Intergalactic Medium in emission: a reprise

    Get PDF
    The Warm-Hot Intergalactic Medium (WHIM) is believed to host a significant fraction of the ``missing baryons'' in the nearby Universe. Its signature has been detected in the X-ray absorption spectra of distant quasars. However, its detection in emission, that would allow us to study the WHIM in a systematic way, is still lacking. Motivated by the possibility to perform these studies with next generation integral field spectrometers, and thanks to the availability of a large suite of state-of-the-art hydrodynamic simulations -- the CAMELS suite -- we study here in detail the emission properties of the WHIM and the possibility to infer its physical properties with upcoming X-ray missions like Athena. We focused on the two most prominent WHIM emission lines, the OVII triplet and the OVIII singlet, and build line surface brightness maps in a lightcone, mimicking a data cube generated through integral field spectroscopy. We confirm that detectable WHIM emission, even with next generation instruments, is largely associated to galaxy-size dark matter halos and that the WHIM properties evolve little from z0.5z\simeq0.5 to now. Some characteristics of the WHIM, like the line number counts as a function of their brightness, depend on the specific hydrodynamic simulation used, while others, like the WHIM clustering properties, are robust to this aspect. The large number of simulations available in the CAMELS datasets allows us to assess the sensitivity of the WHIM properties to the background cosmology and to the energy feedback mechanisms regulated by AGN and stellar activity. [ABRIDGED]Comment: 23 pages, 17 figures, 3 table

    The cross-correlation between 21 cm intensity mapping maps and the Lyα forest in the post-reionization era

    Get PDF
    We investigate the cross-correlation signal between 21cm intensity mapping maps and the Lyα forest in the fully non-linear regime using state-of-the-art hydrodynamic simulations. The cross-correlation signal between the Lyα forest and 21cm maps can provide a coherent and comprehensive picture of the neutral hydrogen (HI) content of our Universe in the post-reionization era, probing both its mass content and volume distribution. We compute the auto-power spectra of both fields together with their cross-power spectrum at z = 2.4 and find that on large scales the fields are completely anti-correlated. This anti-correlation arises because regions with high (low) 21cm emission, such as those with a large (low) concentration of damped Lyα systems, will show up as regions with low (high) transmitted flux. We find that on scales smaller than k sime 0.2 hMpc−1 the cross-correlation coefficient departs from −1, at a scale where non-linearities show up. We use the anisotropy of the power spectra in redshift-space to determine the values of the bias and of the redshift-space distortion parameters of both fields. We find that the errors on the value of the cosmological and astrophysical parameters could decrease by 30% when adding data from the cross-power spectrum, in a conservative analysis. Our results point out that linear theory is capable of reproducing the shape and amplitude of the cross-power up to rather non-linear scales. Finally, we find that the 21cm-Lyα cross-power spectrum can be detected by combining data from a BOSS-like survey together with 21cm intensity mapping observations by SKA1-MID with a S/N ratio higher than 3 in kin[0.06,1] hMpc−1. We emphasize that while the shape and amplitude of the 21cm auto-power spectrum can be severely affected by residual foreground contamination, cross-power spectra will be less sensitive to that and therefore can be used to identify systematics in the 21cm maps

    Cosmic degeneracies - I. Joint N-body simulations of modified gravity and massive neutrinos

    Get PDF
    We present the first suite of cosmological N-body simulations that simultaneously include the effects of two different and theoretically independent extensions of the standard Lambda cold dark matter (Lambda CDM) cosmological scenario - namely an f (R) theory of modified gravity and a cosmological background of massive neutrinos - with the aim to investigate their possible observational degeneracies. We focus on three basic statistics of the large-scale matter distribution, more specifically the non-linear matter power spectrum, the halo mass function, and the halo bias. Our results show that while these two extended models separately determine very prominent and potentially detectable features in all the three statistics, when we allow them to be simultaneously at work these features are strongly suppressed. In particular, when an f (R) gravity model with f(R0) = -1 x 10(-4) is combined with a total neutrino mass of Sigma(i)m(nu i) = 0.4 eV, the resulting matter power spectrum, halo mass function, and bias at z = 0 are found to be consistent with the standard model's predictions at the less than or similar to 10, less than or similar to 20, and less than or similar to 5 per cent accuracy levels, respectively. Therefore, our results imply an intrinsic theoretical limit to the effective discriminating power of present and future observational data sets with respect to these widely considered extensions of the standard cosmological scenario

    High-redshift post-reionization cosmology with 21cm intensity mapping

    Get PDF
    We investigate the possibility of performing cosmological studies in the redshift range 2.5<z<5 through suitable extensions of existing and upcoming radio-telescopes like CHIME, HIRAX and FAST. We use the Fisher matrix technique to forecast the bounds that those instruments can place on the growth rate, the BAO distance scale parameters, the sum of the neutrino masses and the number of relativistic degrees of freedom at decoupling, Neff. We point out that quantities that depend on the amplitude of the 21cm power spectrum, like f\u3c38, are completely degenerate with \u3a9HI and bHI, and propose several strategies to independently constrain them through cross-correlations with other probes. Assuming 5% priors on \u3a9HI and bHI, kmax=0.2 h Mpc-1 and the primary beam wedge, we find that a HIRAX extension can constrain, within bins of \u394 z=0.1: 1) the value of f\u3c38 at 4%, 2) the value of DA and H at 1%. In combination with data from Euclid-like galaxy surveys and CMB S4, the sum of the neutrino masses can be constrained with an error equal to 23 meV (1\u3c3), while Neff can be constrained within 0.02 (1\u3c3). We derive similar constraints for the extensions of the other instruments. We study in detail the dependence of our results on the instrument, amplitude of the HI bias, the foreground wedge coverage, the nonlinear scale used in the analysis, uncertainties in the theoretical modeling and the priors on bHI and \u3a9HI. We conclude that 21cm intensity mapping surveys operating in this redshift range can provide extremely competitive constraints on key cosmological parameters

    Neutrino Halos in Clusters of Galaxies and their Weak Lensing Signature

    Get PDF
    We study whether non-linear gravitational effects of relic neutrinos on the development of clustering and large-scale structure may be observable by weak gravitational lensing. We compute the density profile of relic massive neutrinos in a spherical model of a cluster of galaxies, for several neutrino mass schemes and cluster masses. Relic neutrinos add a small perturbation to the mass profile, making it more extended in the outer parts. In principle, this non-linear neutrino perturbation is detectable in an all-sky weak lensing survey such as EUCLID by averaging the shear profile of a large fraction of the visible massive clusters in the universe, or from its signature in the general weak lensing power spectrum or its cross-spectrum with galaxies. However, correctly modeling the distribution of mass in baryons and cold dark matter and suppressing any systematic errors to the accuracy required for detecting this neutrino perturbation is severely challenging.Comment: 13 pages, 11 figures. Submitted to JCA

    Cosmological Hydrodynamic Simulations with Suppressed Variance in the Ly alpha Forest Power Spectrum

    Get PDF
    We test a method to reduce unwanted sample variance when predicting Lyα forest power spectra from cosmological hydrodynamical simulations. Sample variance arises due to sparse sampling of modes on large scales and propagates to small scales through nonlinear gravitational evolution. To tackle this, we generate initial conditions in which the density perturbation amplitudes are fixed to the ensemble average power spectrum—and are generated in pairs with exactly opposite phases. We run 50 such simulations (25 pairs) and compare their performance against 50 standard simulations by measuring the Lyα 1D and 3D power spectra at redshifts z = 2, 3, and 4. Both ensembles use periodic boxes of 40h1Mpc40\,{h}^{-1}\mathrm{Mpc} containing 5123 particles each of dark matter and gas. As a typical example of improvement, for wavenumbers k=0.25hMpc1k=0.25\,h{\mathrm{Mpc}}^{-1} at z = 3, we find estimates of the 1D and 3D power spectra converge 34 and 12 times faster in a paired–fixed ensemble compared with a standard ensemble. We conclude that, by reducing the computational time required to achieve fixed accuracy on predicted power spectra, the method frees up resources for exploration of varying thermal and cosmological parameters—ultimately allowing the improved precision and accuracy of statistical inference

    Non-linear evolution of the cosmic neutrino background

    Get PDF
    We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations which incorporate cold dark matter (CDM) and neutrinos as independent particle species. Our set of simulations explore the properties of neutrinos in a reference Lambda CDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass 10(11) ¿ 10(15) h(-1) M-circle dot, over a redshift range z = 0 ¿ 2. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula, once the neutrino contribution to the total matter is removed. More importantly, we focus on the CDM and neutrino properties of the density and peculiar velocity fields in the cosmological volume, inside and in the outskirts of virialized haloes. The dynamical state of the neutrino particles depends strongly on their momentum: whereas neutrinos in the low velocity tail behave similarly to CDM particles, neutrinos in the high velocity tail are not affected by the clustering of the underlying CDM component. We find that the neutrino (linear) unperturbed momentum distribution is modified and mass and redshift dependent deviations from the expected Fermi-Dirac distribution are in place both in the cosmological volume and inside haloes. The neutrino density profiles around virialized haloes have been carefully investigated and a simple fitting formula is provided. The neutrino profile, unlike the cold dark matter one, is found to be cored with core size and central density that depend on the neutrino mass, redshift and mass of the halo, for halos of masses larger than similar to 10(13.5) h(-1) M-circle dot. For lower masses the neutrino profile is best fitted by a simple power-law relation in the range probed by the simulations. The results we obtain are numerically converged in terms of neutrino profiles at the 10% level for scales above similar to 200 h(-1) kpc at z = 0, and are stable with respect to box-size and starting redshift of the simulation. Our findings are particularly important in view of upcoming large-scale structure surveys, like Euclid, that are expected to probe the non-linear regime at the percent level with lensing and clustering observations

    The Galactic Halo in Mixed Dark Matter Cosmologies

    Full text link
    A possible solution to the small scale problems of the cold dark matter (CDM) scenario is that the dark matter consists of two components, a cold and a warm one. We perform a set of high resolution simulations of the Milky Way halo varying the mass of the WDM particle (mWDMm_{\rm WDM}) and the cosmic dark matter mass fraction in the WDM component (fˉW\bar{f}_{\rm W}). The scaling ansatz introduced in combined analysis of LHC and astroparticle searches postulates that the relative contribution of each dark matter component is the same locally as on average in the Universe (e.g. fW,=fˉWf_{\rm W,\odot} = \bar{f}_{\rm W}). Here we find however, that the normalised local WDM fraction (fW,f_{\rm W,\odot} / fˉW\bar{f}_{\rm W}) depends strongly on mWDMm_{\rm WDM} for mWDM<m_{\rm WDM} < 1 keV. Using the scaling ansatz can therefore introduce significant errors into the interpretation of dark matter searches. To correct this issue a simple formula that fits the local dark matter densities of each component is provided.Comment: 19 pages, 10 figures, accepted for publication in JCA

    Cosmology with a SKA HI intensity mapping survey

    Get PDF
    HI intensity mapping (IM) is a novel technique capable of mapping the large-scale structure of the Universe in three dimensions and delivering exquisite constraints on cosmology, by using HI as a biased tracer of the dark matter density field. This is achieved by measuring the intensity of the redshifted 21cm line over the sky in a range of redshifts without the requirement to resolve individual galaxies. In this chapter, we investigate the potential of SKA1 to deliver HI intensity maps over a broad range of frequencies and a substantial fraction of the sky. By pinning down the baryon acoustic oscillation and redshift space distortion features in the matter power spectrum -- thus determining the expansion and growth history of the Universe -- these surveys can provide powerful tests of dark energy models and modifications to General Relativity. They can also be used to probe physics on extremely large scales, where precise measurements of spatial curvature and primordial non-Gaussianity can be used to test inflation; on small scales, by measuring the sum of neutrino masses; and at high redshifts where non-standard evolution models can be probed. We discuss the impact of foregrounds as well as various instrumental and survey design parameters on the achievable constraints. In particular we analyse the feasibility of using the SKA1 autocorrelations to probe the large-scale signal
    corecore