5 research outputs found

    Spatio-temporal dynamics of dengue in Brazil: Seasonal travelling waves and determinants of regional synchrony.

    Get PDF
    Dengue continues to be the most important vector-borne viral disease globally and in Brazil, where more than 1.4 million cases and over 500 deaths were reported in 2016. Mosquito control programmes and other interventions have not stopped the alarming trend of increasingly large epidemics in the past few years. Here, we analyzed monthly dengue cases reported in Brazil between 2001 and 2016 to better characterise the key drivers of dengue epidemics. Spatio-temporal analysis revealed recurring travelling waves of disease occurrence. Using wavelet methods, we characterised the average seasonal pattern of dengue in Brazil, which starts in the western states of Acre and RondĂŽnia, then travels eastward to the coast before reaching the northeast of the country. Only two states in the north of Brazil (Roraima and AmapĂĄ) did not follow the countrywide pattern and had inconsistent timing of dengue epidemics throughout the study period. We also explored epidemic synchrony and timing of annual dengue cycles in Brazilian regions. Using gravity style models combined with climate factors, we showed that both human mobility and vector ecology contribute to spatial patterns of dengue occurrence. This study offers a characterization of the spatial dynamics of dengue in Brazil and its drivers, which could inform intervention strategies against dengue and other arboviruses

    Drug resistance mutations in HIV:new bioinformatics approaches and challenges

    Get PDF
    International audienceDrug resistance mutations appear in HIV under treatment pressure. Resistant variants can be transmitted to treatmentnaive individuals, which can lead to rapid virological failure and can limit treatment options. Consequently, quantifying the prevalence, emergence and transmission of drug resistance is critical to effectively treating patients and to shape health policies. We review recent bioinformatics developments and in particular describe: (1) the machine learning approaches intended to predict and explain the level of resistance of HIV variants from their sequence data; (2) the phylogenetic methods used to survey the emergence and dynamics of resistant HIV transmission clusters; (3) the impact of deep sequencing in studying within-host and between-host genetic diversity of HIV variants, notably regarding minority resistant variants

    Genomic and epidemiological characterisation of a dengue virus outbreak among blood donors in Brazil.

    Get PDF
    Outbreaks caused by Dengue, Zika and Chikungunya viruses can spread rapidly in immunologically naĂŻve populations. By analysing 92 newly generated viral genome sequences from blood donors and recipients, we assess the dynamics of dengue virus serotype 4 during the 2012 outbreak in Rio de Janeiro. Phylogenetic analysis indicates that the outbreak was caused by genotype II, although two isolates of genotype I were also detected for the first time in Rio de Janeiro. Evolutionary analysis and modelling estimates are congruent, indicating a reproduction number above 1 between January and June, and at least two thirds of infections being unnoticed. Modelling analysis suggests that viral transmission started in early January, which is consistent with multiple introductions, most likely from the northern states of Brazil, and with an increase in within-country air travel to Rio de Janeiro. The combination of genetic and epidemiological data from blood donor banks may be useful to anticipate epidemic spread of arboviruses

    Genome sequencing reveals Zika virus diversity and spread in the Americas

    Get PDF
    Although the recent Zika virus (ZIKV) epidemic in the Americas and its link to birth defects have attracted a great deal of attention, much remains unknown about ZIKV disease epidemiology and ZIKV evolution, in part owing to a lack of genomic data. Here we address this gap in knowledge by using multiple sequencing approaches to generate 110 ZIKV genomes from clinical and mosquito samples from 10 countries and territories, greatly expanding the observed viral genetic diversity from this outbreak. We analysed the timing and patterns of introductions into distinct geographic regions; our phylogenetic evidence suggests rapid expansion of the outbreak in Brazil and multiple introductions of outbreak strains into Puerto Rico, Honduras, Colombia, other Caribbean islands, and the continental United States. We find that ZIKV circulated undetected in multiple regions for many months before the first locally transmitted cases were confirmed, highlighting the importance of surveillance of viral infections. We identify mutations with possible functional implications for ZIKV biology and pathogenesis, as well as those that might be relevant to the effectiveness of diagnostic tests
    corecore