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ScienceDirect
Drug resistance mutations appear in HIV under treatment

pressure. Resistant variants can be transmitted to treatment-

naive individuals, which can lead to rapid virological failure and

can limit treatment options. Consequently, quantifying the

prevalence, emergence and transmission of drug resistance is

critical to effectively treating patients and to shape health

policies. We review recent bioinformatics developments and in

particular describe: (1) the machine learning approaches

intended to predict and explain the level of resistance of HIV

variants from their sequence data; (2) the phylogenetic

methods used to survey the emergence and dynamics of

resistant HIV transmission clusters; (3) the impact of deep

sequencing in studying within-host and between-host genetic

diversity of HIV variants, notably regarding minority resistant

variants.
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Introduction
Drug resistance mutations (DRMs) arise in Human

Immunodeficiency Virus-1 (HIV-1) due to antiretroviral

treatment pressure, leading to viral rebound and treat-

ment failure [1,2]. Furthermore, drug-resistant HIV var-

iants can be transmitted to treatment-naive individuals
www.sciencedirect.com 
and further spread throughout the population over time

[3–5]. These transmitted drug-resistant (TDR) HIV var-

iants limit treatment options and have clinical and public

health implications worldwide. The scale of TDR varies

globally; in the US and Europe, the prevalence of TDR

has decreased or stabilized at between 5% and 15% [6–

11]. However, in resource-limited countries, the preva-

lence of TDR is becoming a pressing health issue [11,12],

with many regions reporting an exponential increase in

prevalence and many surpassing 10% prevalence [13].

Indeed, WHO have suggested that if the prevalence of

TDR exceeds 10% in a country, then first-line regimens

should be reconsidered [14]. Because of this, a number of

countries in Africa and Asia have revised their national

treatment guidelines [12].

There are five main classes of HIV-1 antiretroviral thera-

pies, which target different virus proteins: (i) nucleoside/

nucleotide reverse transcriptase inhibitors (NRTIs), (ii)

non-nucleoside reverse transcriptase inhibitor

(NNRTIs), (iii) protease inhibitors (PIs), (iv) integrase

inhibitors (INIs or INSTIs) and (v) entry inhibitors. The

reverse transcriptase, protease and integrase proteins are

encoded in the pol gene, while the entry inhibitors induce

DRMs in the env gene. NRTIs and NNRTIs date back to

the 80s and are currently the most commonly used drugs.

PIs and INIs appeared more recently, in the mid-90s, and

are still in development [15,16]. PIs and INIs are associ-

ated with lower levels of resistance compared to reverse

transcriptase-based therapy. INIs are increasingly used in

first-line regimens in the presence of NNRTI resistance

at the population level [12]. In total, there are �25

available drugs, all of which are associated with known

DRMs. A list of DRMs is regularly updated [17�] by a

consortium of international experts, who select and clas-

sify the DRMs to be surveilled (�175 in total) based on

genotype analyses, phenotypic resistance tests and clini-

cal outcome in patients on antiretroviral therapies. Pri-

mary DRMs directly confer resistance to treatments, but

some mutations have an accessory role, increasing drug

resistance when appearing alongside primary DRMs,

while others seem to have a compensatory role and reduce

the fitness cost for primary DRMs. All this, combined

with the development of new antiretroviral drugs [16,18�]
and the use of antiretroviral treatments in high-risk

populations by pre-exposure prophylaxis [19,20], makes

it particularly important to further our understanding of
Current Opinion in Virology 2021, 51:1–9
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2 Virus bioinformatics
HIV adaptation, detect new mutations associated with

drug resistance, and survey the emergence of resistant-

HIV transmission clusters in infected populations, espe-

cially in low-income countries.

For all these endeavors to advance, bioinformatics meth-

ods and large well-curated sequence databases are essen-

tial. The Stanford HIV Drug Resistance Database

(https://hivdb.stanford.edu/) is the largest public reposi-

tory and most widely used online resource for HIV drug

resistance. It currently comprises: (1) �450 000 sequences

(reverse transcriptase, protease or integrase) from �200

000 patients with treatment status, from all around the

word; (2) �60 000 results of drug susceptibility assays

from HIV-1 virus isolates; (3) clinical outcome data from

15 clinical trials; (4) many software programs and web

services to query this data. Several countries and regions

have set up national databases of HIV sequences gener-

ated through routine resistance genotyping. These repos-

itories link genotypic data with anonymized clinical and

demographic information, and are regularly updated,

making these national databases an attractive resource

to study and monitor drug resistance. However, due to the

sensitive nature of patient-derived information, the con-

tent of these national databases is non-public and only

available on request. The main national/regional HIV

drug resistance repositories include: (i) The UK HIV

Drug Resistance Database (https://www.hivrdb.org.uk/),

which is the central repository for resistance tests per-

formed as part of routine clinical care throughout the UK

since 2001. It currently comprises over 165 000 test

results, most in the form of annotated pol gene sequences

and includes over 60% of the newly diagnosed patients in

the UK, with linked clinical data available for the majority

of patients. (ii) The Swiss HIV Cohort Study Drug

Resistance Database (http://www.shcs.ch/) that includes

data and meta-data from over 80% of new diagnoses in

Switzerland. (iii) The PANGEA database [21�] with data

from sub-Saharan Africa, a radically different region

where the pandemic started and is of great concern, which

holds over 12 000 nearly complete HIV-1 genomes, with

basic-to-extensive associated epidemiological metadata.

In the following, we describe the main approaches to

decipher this data, and the potential of Next Generation

Sequencing (NGS) to better understand and survey the

emergence of DRMs and their transmission.

Machine learning approaches to study and
predict resistance
The presence of DRMs before the start of an antiretrovi-

ral therapy regimen is a strong predictor of the success or

failure of that regimen. Resistance testing using DNA

sequencing is performed routinely in upper-income coun-

tries, and with increasing frequency in low-income and

middle-income countries. To this end, computer pro-

grams are used to analyze the virus sequence of the
Current Opinion in Virology 2021, 51:1–9 
patient (i.e. the virus genotype) and predict the level

of resistance of this sequence to available drugs (i.e. the

resistance phenotype of the virus). Computer programs

can also be used to optimize the combination of multiple

drugs [22].

The standard approach to predict the level of resistance of

HIV sequences (either in the reverse transcriptase, pro-

tease or integrase proteins) is to rely on known resistance

mutations to various antiretroviral therapies. HIVdb [23]

uses expert rules to combine mutations (primary or acces-

sory) observed in the studied sequences, while

WebPSSM [24] uses position-specific scoring matrices.

However, machine learning methods are increasingly

used for this purpose, often via web services [25,26].

These methods first learn a statistical model from a set

of training examples, that is, virus sequences and their

resistance level measured experimentally using Pheno-

Sense assays [27], and then assess the accuracy of the

learned model using an independent set of testing exam-

ples or a cross-validation procedure. We distinguish clas-

sification methods, which predict the effectiveness of a

given antiretroviral therapy [28�], and regression

approaches, which predict the fold resistance ratio of

the given sequence compared to the wild type [29]. Initial

approaches were based on decision trees [30], support

vector machines [25], logistic regression [31] and neural

networks [29]. The latter showed higher accuracy (on

average �85%) than the rule-based methods used, for

instance, by HIVdb (�70%) [29].

Deep learning models (i.e. neural networks with complex

architectures and a large number of hidden neurons [32])

are a major focus in current machine learning research and

have been successfully applied to many biological pro-

blems [33]. Moreover, recent methods make it possible to

map model outputs back to subsets of the most influential

input features [34]. This approach was explored by Stei-

ner et al. [28�], who evaluated the performance of three

deep learning architectures (multilayer perceptron, bidi-

rectional recurrent neural network, and convolutional

neural network) for drug resistance prediction using

genotype-phenotype data available from HIVdb, as train-

ing and testing data (via cross-validation). The resistance

to 18 antiretroviral therapies was learned from �2100

sequences associated with PI susceptibility, �1800

sequences associated with NNRTI susceptibility, and

2100 sequences associated with NRTI susceptibility

(measured by PhenoSense assays [27], as for PI and

NNRTI data). The accuracy of convolutional neural

networks ranged from 86% to 96% and a large number

of known DRMs were among the most influential input

features. Authors suggest that other influential mutations

could also be associated with resistance. These findings

underscore the gain in accuracy brought by machine

learning approaches, compared to rule-based methods

(e.g. HIVdb). However, the main limitation is the low
www.sciencedirect.com
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number of available sequences with drug susceptibility

measurement given that deep learning is commonly used

with much larger data sets (>10 000 and frequently >100

000 training examples).

Another approach was explored in Ref. [35�] to study

resistance patterns, epistasis and discover new DRMs

using: (i) A much larger reverse transcriptase sequence

dataset (�55 000 sequences) for training; (ii) A classifica-

tion task to discriminate treatment-naı̈ve from treatment-

experienced sequences; (iii) Simpler machine learning

models, such as random forest and logistic regression; (iv)

Testing on a very different African dataset with subtypes

not seen in the training data to improve robustness and to

limit the impact of phylogenetic confounding factors.

These choices were made with one goal in mind:

interpretability, because it allows the easy extraction of

mutations associated with resistance from important

(influential) classifier features. To summarize, more

DRMs are expected among treated patients than among

naı̈ve ones, even if we expect some DRMs to be present

among naı̈ve patients due to TDRs. To extract DRMs we

can then perform tests (e.g. exact Fisher tests [36]) or use

more advanced, interpretable machine learning methods

[35�]. To confirm and further explore the nature of newly

discovered resistance associated mutations, the training

process was repeated after removing features and

sequences corresponding to known DRMs (Figure 1a).

This approach allowed the finding of six new potential

accessory mutations. Two of these are L228H and L228R

(i.e. mutations from L to H and L to R, respectively, at

reference position 228 of reverse transcriptase), which are

spatially very close to both the active and regulatory sites

of reverse transcriptase (Figure 1b), and are overrepre-

sented in sequences containing known DRMs

(Figure 1c.1 and c.2).

Phylogenetic methods to decipher the spread
of resistance
Following acquisition under treatment pressure, DRMs

and resistance-associated mutations can be transmitted to

treatment naı̈ve patients. We distinguish acquired and

transmitted drug resistances (TDRs). TDRs can be fur-

ther separated into those corresponding to treated-to-

naı̈ve versus naı̈ve-to-naı̈ve transmissions. The latter

are particularly problematic, as they can cause the emer-

gence of resistance clusters in the naı̈ve population. On

the other hand, DRMs have some fitness cost and in the

absence of treatment they tend to be reverted to the wild

type amino acid. Some DRMs have been shown to revert

rapidly (e.g. M184V in reverse transcriptase, associated to

NRTIs [37,38]), while others have a low fitness cost (e.g.

L90M in protease [39]) and tend to induce large resis-

tance clusters ([40]; Figure 2).

Traditionally, for routine resistance genotyping a unique

consensus virus sequence per patient is used to
www.sciencedirect.com 
characterize the variants infecting a given individual,

and phylogenetic trees are inferred from these consensus

sequences to study the emergence, transmission and

reversion of DRMs at the population level. In these trees,

sequences that cluster together represent transmission

clusters and each of the internal tree nodes corresponds to

a transmission event. However, with one sequence per

patient one cannot infer the direction of transmission, that

is, distinguish the transmitter and recipient partners

corresponding to a given tree node. With multiple

sequences per patient, as obtained from NGS, phyloge-

netic methods help to infer the most likely transmission

history [41]. However, reliably identifying the direction of

transmissions remains challenging [42] and depends on,

among other factors, the genetic diversity captured in the

virus sequences of the individuals [43]. To summarize,

the genetic diversity of the virus is expected to be

significantly higher for the transmitter than for the recipi-

ent, but both can be similar, for example, when the

infection dates are close. Moreover, one can never rule

out the possibility of an intermediate, unsampled indi-

vidual. Despite these limitations, phylogenetic inference

has proved a promising tool for the population-level

analysis of HIV resistance transmission. For example,

phylogenetic tools are key in the PANGEA project

[21�] to analyze the source-sink dynamics in several

Sub-Sahara African settings, aiming to find generalizable

characteristics of transmitters and transmission events,

and guide recommendations for HIV treatment and pre-

vention policies.

To decipher DRM transmissions, the most likely trans-

mission clusters are extracted from the phylogeny.

Genetic clusters correspond to well-supported subtrees

that contain sequences closely related to each other and

distant from the rest of the tree based on user-defined

genetic thresholds [45]. A genetic cluster can be inter-

preted as representing a recent outbreak, for example,

when a virus acquires a DRM and the patient starts

transmitting the resistant virus. If most of the individuals

in this cluster contain the same DRM, they form a

resistance cluster, from which the number of within-

cluster naı̈ve-to-naı̈ve TDRs can be estimated. This

approach was used to study TDRs in Switzerland

[46,47], Denmark [48], Ethiopia [49] and the USA [50].

The second approach refines the previous one by using

ancestral state reconstruction of a binary character

describing the presence/absence of the studied DRM.

Tree tips are annotated using the presence or absence of

mutations, and the internal node states are inferred using

parsimony [4] or maximum-likelihood [51�] methods.

The clusters are defined by subsets of tips and nodes,

all of which have the same resistance status and descend

from a unique node corresponding to the first within-

cluster transmission. Isolated, resistant tips with treat-

ment-experienced status are interpreted as acquired drug
Current Opinion in Virology 2021, 51:1–9
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Detecting resistance associated mutations using machine learning.

This figure is adapted from Ref. [35�]. The authors used a large UK dataset (n = 55 539) of reverse transcriptase sequences from HIV patients,

who have received treatment or not [44]. Sequences from this dataset were encoded as binary vectors where each feature corresponded to a

specific mutation. These vectors were used to train classifiers, logistic regression (LR) and a Fisher-test-based classifier (FC), to discriminate

between treatment-experienced and treatment-naı̈ve sequences. These classifiers were then evaluated on a smaller and phylogenetically very

different African dataset (n = 3990) using the adjusted mutual information (panel (a)). This criterion measures how well the classifiers discriminate

the two types of sequences (0: random classifier; 10� = 1: perfect classifier) and can be used to compute a p-value to see if the results are truly

different to ones from a random classifier (an asterisk denotes a p-value � 0.05). In panel (a), when all features are kept, both classifiers have high

(close to 1), highly significant discriminatory power. In order to check where this power comes from, the authors did the same procedure, but this

time removing features corresponding to known DRMs from the encoded vectors. The adjusted mutual information is lower than when using the

full vectors, but still significantly better than random. Finally, the authors repeated the procedure after removing all sequences that had at least

one known DRM from the training set. This time the adjusted mutual information indicates that the classifiers are no better than random. This

shows that even after removing known DRMs from the data, there remains some resistance-associated information in the sequences, which

differentiates treatment-naı̈ve and treatment-experienced sequences. Furthermore, this information seems to be in the sequences that already

contained DRMs, meaning that it most likely corresponds to accessory mutations that appear alongside known DRMs. By examining the LR and

FC classifiers, we can extract the most important mutations in their decision-making; L228H and L228R of reverse transcriptase are two such

mutations studied in Ref. [35�]. Site 228 in panel (b) is positioned right between the active site (where NRTIs act) and the regulatory ‘NNIBP’ site

(where NNRTIs act). To check the accessory nature of these mutations, the authors computed relative risk between L228R/H and known DRMs.

For a given known DRM, the relative risk corresponds to the prevalence of L228R/H in sequence that have that DRM, divided by the prevalence

of L228R/H in sequences that do not have that DRM. In panels (c.1) and (c.2), relative risks for L228R and L228H are shown with their 95%

confidence intervals. These relative risks show that L228R and L228H are highly overrepresented both in sequences that contain DRMs to NRTI

and NNRTI. This, as well as the physical proximity of site 228 to the sites where both classes of drugs operate, point to a potential role as

accessory mutations to known DRMs.

Current Opinion in Virology 2021, 51:1–9 www.sciencedirect.com
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Figure 2
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Emergence and transmission of resistance in protease (mutation L90M, subtype B, UK).

Ancestral state reconstruction of the presence/absence of DRM L90M over time was performed and visualized by PastML [51�] on a phylogenetic

tree inferred from 39 224 UK subtype B pol gene sequences [44] with RAxML-NG [52] and dated with LSD2 [60]. Resistance status was detected

with sierrapy [23]. A sensitive resistance status for all tree nodes and tips before 1995 (year of acceptance of Saquinavir, the first antiretroviral

therapy that can provoke L90M DRM) was imposed as in Ref. [61]. Circles denote clusters of samples with the same L90M state (green when the

mutation is absent, orange for resistant strains); the sample sizes of clusters are indicated in the labels, for example, the circle ‘resistant 119’

represents the largest resistance cluster in 2016 (119 patients). Clusters with a ‘0’ and two colors indicate internal tree nodes for which both

resistant and sensitive states had similar marginal probabilities. Arrows between two circles denote transmissions from the top to the bottom

cluster (i.e. acquired drug resistances correspond to the sensitive-to-resistant transmissions, while reversions correspond to the resistant-to-

sensitive ones). The size and the number on top of the arrows indicate that the arrows represent multiple transmission events leading to clusters

of similar sizes (e.g. the arrow of size 483 represents 483 acquired drug resistances). Overall, we see both a large number of independent

acquisitions of drug resistance (arrows from green to orange circles), and the emergence of resistance clusters (orange circles of size >1). As

expected, we do not see any resistance cluster in 1998, and small ones in 2005 (�19 patients). We also see a substantial amount of reversions (e.

g. 9 + 15 from the largest 2016 resistance cluster).
resistances (�83% in average, in UK subtype B [4]), while

in resistance clusters we mostly observe naı̈ve-to-naı̈ve

TDRs (�70% in average, in UK subtype B [4]). Rever-

sions correspond to non-resistant tips and clusters des-

cending from a resistance cluster. This approach is illus-

trated in Figure 2, where we used maximum-likelihood

[52] to build a large tree containing 39 224 subtype B

sequences from the UK, and infer [51�] the resistance

status of all tree nodes for the L90M protease DRM. This

mutation has a low fitness cost (see above), which likely

explains its high frequency and high probability of trans-

mission between treatment-naı̈ve individuals, resulting in

large resistance clusters and low reversion rate [4].

Next-generation sequencing, resistant
minority variants
Standard population-based Sanger sequencing provides

the genotypes of the predominant variants in a patient,
www.sciencedirect.com 
but fails to detect resistant minority variants present in

less than �20% of the total viral population [53]. By

contrast, next generation sequencing (NGS)-based pipe-

lines not only lower sequencing costs, but also enable

reliable and specific detection of resistant variants

accounting for �2% of the viral population [54,55�].
NGS is thus becoming the new standard for genotypic

drug resistance testing for HIV [56,57�,58�,59�].

Resistant minority variants are suspected to cause viro-

logical failures that are difficult to predict using Sanger

sequencing when their frequency is below 20%. In fact,

the clinical impact of resistant minority variants is not

uniform across drug classes and depends on the genetic

barrier to resistance to specific drugs. NNRTIs in partic-

ular have a low genetic barrier (a single DNA mutation

can drastically affect drug susceptibility) and many stud-

ies [62] have shown that resistant minority variants may
Current Opinion in Virology 2021, 51:1–9
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adversely affect the response to NNRTIs. Moreover,

there is increasing evidence showing that resistant minor-

ity variants increase the risk of treatment switches and

DRM accumulation [63]. All this, combined with the fact

that NGS enables the quantification of DRM frequencies

(and not solely their detection, as with Sanger sequenc-

ing), led to the development of many software pipelines

to extract and quantify resistant minority variants from

NGS data [55�]. For example, Hivmmer [64] is an align-

ment and variant-calling pipeline for Illumina HIV deep

sequences, based on the probabilistic aligner Hmmer

[65]. While the main pipelines are able to detect and

quantify DRM frequencies [55�], there is still a need for

standardization and quality assurance [57�]. Moreover, to

our knowledge, no tool to predict resistance to major

drugs of a representative sample of variants hosted by

a patient exists for NGS data.

Resistant minority variants are also suspected to play a

part in the transmission of DRMs. The study of a large

international cohort of naı̈ve patients using NGS resulted

in the detection of a large fraction of DRMs correspond-

ing to minority variants, which would not have been

detected by traditional Sanger sequencing [59�]. Phylo-

genetic analyses [58�,66] indicate that some of these rare

variants likely result from transmissions. However, care-

ful analysis of resistance clusters favors the hypothesis

that most resistant minority variants found in naı̈ve

patients are likely generated de novo as a result of repli-

cation errors [66].

Finally, new tools specifically designed for parsing the

large volume of information contained within NGS data-

sets have recently begun to gain traction. For example, by

simultaneously analyzing within-host and between-host

pathogen sequences, phyloscanner [41] provides unprec-

edented resolution into the transmission process, allowing

inference of the direction of transmission, the identifica-

tion of TDRs and the detection of multiply infected

individuals. Such an approach combined with rich

NGS data and metadata should be of great help in

phylodynamic studies [67�].

Perspectives
HIV drug resistance surveillance is essential to track

TDR trends and shape first-line regimen recommenda-

tions, especially in low-income countries where DRMs

are frequent, often multiple, and tend to increase

[12,14,36,68]. We are at a crossroads where NGS should

occupy a major place in HIV resistance surveillance and

clinical care, thanks to its decreasing costs and ability to

reveal resistant minority variants and study their impact.

However, adoption of NGS-based HIV resistance geno-

typing poses pressing challenges [56,57�], especially for

low-income countries, where they are most needed

[58�,69]. In particular, there is a need for standardized

analyses, validated pipelines, and public large-scale
Current Opinion in Virology 2021, 51:1–9 
databases providing not only the within-host diversity

of the virus at different time points, but also rich patient

metadata (e.g. treatment history). In this context,

machine learning and phylogenetic approaches are

expected to play a major role, as they have already done

with Sanger sequencing. Moreover, the use of modeling

should increase to develop and monitor first-line and

second-line treatment regimens [70�], and to characterize

the impact of DRMs [71]. Lastly, the analysis of trans-

mission networks [39,72–74] should help us gain further

insight in HIV drug resistance surveillance.
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3. Hué S, Gifford RJ, Dunn D, Fernhill E, Pillay D: Resistance on B of
the UCG on HD: demonstration of sustained drug-resistant
human immunodeficiency virus type 1 lineages circulating
among treatment-naı̈ve individuals. J Virol 2009, 83:2645-2654
http://dx.doi.org/10.1128/JVI.01556-08.

4. Mourad R, Chevennet F, Dunn D, Fearnhill E, Delpech V, Asboe D,
Gascuel O, Hue S: A phylotype-based analysis highlights the
role of drug-naive HIV-positive individuals in the transmission
of antiretroviral resistance in the UK. AIDS 2015, 29:1917-1925
http://dx.doi.org/10.1097/QAD.0000000000000768.

5. Zhukova A, Cutino-Moguel T, Gascuel O, Pillay D: The role of
phylogenetics as a tool to predict the spread of resistance. J
Infect Dis 2017, 216:S820-S823 http://dx.doi.org/10.1093/infdis/
jix411.

6. Novak RM, Chen L, MacArthur RD, Baxter JD, Hullsiek KH,
Peng G, Xiang Y, Henely C, Schmetter B, Uy J et al.: Prevalence of
antiretroviral drug resistance mutations in chronically HIV–
infected, treatment-naive patients: implications for routine
resistance screening before initiation of antiretroviral therapy.
Clin Infect Dis 2005, 40:468-474 http://dx.doi.org/10.1086/
427212.

7. Geretti AM: Epidemiology of antiretroviral drug resistance in
drug-naı̈ve persons. Curr Opin Infect Dis 2007, 20:22-32 http://
dx.doi.org/10.1097/QCO.0b013e328013caff.

8. Ross L, Lim ML, Liao Q, Wine B, Rodriguez AE, Weinberg W,
Shaefer M: Prevalence of antiretroviral drug resistance and
www.sciencedirect.com

http://dx.doi.org/10.1086/315301
http://dx.doi.org/10.1086/315301
http://dx.doi.org/10.1128/JVI.01556-08
http://dx.doi.org/10.1097/QAD.0000000000000768
http://dx.doi.org/10.1093/infdis/jix411
http://dx.doi.org/10.1086/427212
http://dx.doi.org/10.1086/427212
http://dx.doi.org/10.1097/QCO.0b013e328013caff
http://dx.doi.org/10.1097/QCO.0b013e328013caff
http://dx.doi.org/10.1310/hct0801-1
http://dx.doi.org/10.1310/hct0801-1


Drug resistance mutations in HIV: new bioinformatics approaches and challenges Blassel et al. 7
resistance-associated mutations in antiretroviral therapy-
naı̈ve HIV-infected individuals from 40 United States cities. HIV
Clin Trials 2007, 8:1-8 http://dx.doi.org/10.1310/hct0801-1.

9. Wheeler WH, Ziebell RA, Zabina H, Pieniazek D, Prejean J,
Bodnar UR, Mahle KC, Heneine W, Johnson JA, Hall HI et al.:
Prevalence of transmitted drug resistance associated
mutations and HIV-1 subtypes in new HIV-1 diagnoses, U.S.–
2006. AIDS 2010, 24:1203-1212 http://dx.doi.org/10.1097/
QAD.0b013e3283388742.

10. Frentz D, Boucher CAB, van de Vijver DAMC: Temporal changes
in the epidemiology of transmission of drug-resistant HIV-1
across the world. AIDS Rev 2012, 14:17-27 https://pubmed.ncbi.
nlm.nih.gov/22297501/.

11. Günthard HF, Calvez V, Paredes R, Pillay D, Shafer RW,
Wensing AM, Jacobsen DM, Richman DD: Human
immunodeficiency virus drug resistance:
2018 recommendations of the international antiviral society–
USA panel. Clin Infect Dis 2019, 68:177-187 http://dx.doi.org/
10.1093/cid/ciy463.

12. World Health Organization: HIV Drug Resistance Report 2019.
World Health Organization; 2019 http://www.who.int/hiv/pub/
drugresistance/hivdr-report-2019/en/.

13. Gupta RK, Gregson J, Parkin N, Haile-Selassie H, Tanuri A,
Andrade Forero L, Kaleebu P, Watera C, Aghokeng A, Mutenda N
et al.: HIV-1 drug resistance before initiation or re-initiation of
first-line antiretroviral therapy in low-income and middle-
income countries: a systematic review and meta-regression
analysis. Lancet Infect Dis 2018, 18:346-355 http://dx.doi.org/
10.1016/S1473-3099(17)30702-8.

14. World Health Organization: Consolidated Guidelines on the Use of
Antiretroviral Drugs for Treating and Preventing HIV Infection.
World Health Organization; 2016 http://www.who.int/hiv/pub/arv/
arv-2016/en/.

15. Wensing AMJ, van Maarseveen NM, Nijhuis M: Fifteen years of
HIV Protease Inhibitors: raising the barrier to resistance.
Antiviral Res 2010, 85:59-74 http://dx.doi.org/10.1016/j.
antiviral.2009.10.003.

16. Trivedi J, Mahajan D, Jaffe RJ, Acharya A, Mitra D, Byrareddy SN:
Recent advances in the development of integrase inhibitors
for HIV treatment. Curr HIV/AIDS Rep 2020, 17:63-75 http://dx.
doi.org/10.1007/s11904-019-00480-3.

17.
�

Wensing AM, Calvez V, Ceccherini-Silberstein F, Charpentier C,
Günthard HF, Paredes R, Shafer RW, Richman DD: 2019 update
of the drug resistance mutations in HIV-1. Top Antivir Med 2019,
27:111-121 https://pubmed.ncbi.nlm.nih.gov/31634862/

The 2019 edition of the IAS-USA drug resistance mutations list and
Figure. The mutations listed are those that have been identified by
specific criteria for evidence and drugs described. The Figure is designed
to assist practitioners in identifying key mutations associated with resis-
tance to antiretroviral drugs. This regularly updated material is useful for
anyone working on HIVDR.

18.
�

Tzou PL, Rhee S-Y, Descamps D, Clutter DS, Hare B, Mor O,
Grude M, Parkin N, Jordan MR, Bertagnolio S et al.: Integrase
strand transfer inhibitor (INSTI)-resistance mutations for the
surveillance of transmitted HIV-1 drug resistance. J Antimicrob
Chemother 2020, 75:170-182 http://dx.doi.org/10.1093/jac/
dkz417

Recent classification of the INSTI-resistance mutations for transmitted
HIV-1 drug resistance (TDR) surveillance. Criteria include: presence on
published expert lists, conservation in INSTI-naive persons, frequency in
INSTI-treated persons and contribution to reduce in vitro susceptibility.
Importantly, selected DRMs are non-polymorphic (i.e. commonly found in
wild variants). A set of 24 DRMs is selected, as being likely to be useful for
quantifying INSTI-associated TDR.

19. Grant RM, Lama JR, Anderson PL, McMahan V, Liu AY, Vargas L,
Goicochea P, Casapı́a M, Guanira-Carranza JV, Ramirez-
Cardich ME et al.: Preexposure chemoprophylaxis for HIV
prevention in men who have sex with men. N Engl J Med 2010,
363:2587-2599 http://dx.doi.org/10.1056/NEJMoa1011205.

20. McCormack S, Dunn DT, Desai M, Dolling DI, Gafos M, Gilson R,
Sullivan AK, Clarke A, Reeves I, Schembri G et al.: Pre-exposure
prophylaxis to prevent the acquisition of HIV-1 infection
(PROUD): effectiveness results from the pilot phase of a
www.sciencedirect.com 
pragmatic open-label randomised trial. Lancet 2016, 387:53-60
http://dx.doi.org/10.1016/S0140-6736(15)00056-2.

21.
�

Abeler-Dörner L, Grabowski MK, Rambaut A, Pillay D, Fraser C, on
behalf of the PANGEA consortium: PANGEA-HIV 2:
phylogenetics and networks for generalised epidemics in
Africa. Curr Opin HIV AIDS 2019, 14:173-180 http://dx.doi.org/
10.1097/COH.0000000000000542

The PANGEA (Phylogenetics and Networks for Generalized Epi-
demics in Africa) consortium has generated over 18 000 NGS HIV
sequences from five countries in Eastern and Southern Africa:
Botswana, Kenya, South Africa, Uganda and Zambia, sampled over
2014–2018. Combining phylogenetics, phylodynamics and epide-
miology PANGEA-II will highlight where prevention efforts should be
focused in sub-Saharan Africa to reduce the HIV epidemic most
effectively. PANGEA offers accreditation to and welcomes project
proposals and data contributions from external researchers who
share their aims.

22. Zazzi M, Cozzi-Lepri A, Prosperi MCF: Computer-aided
optimization of combined anti-retroviral therapy for HIV: new
drugs, new drug targets and drug resistance. Curr HIV Res
2016, 14:101-109.

23. Liu TF, Shafer RW: Web resources for HIV type 1 genotypic-
resistance test interpretation. Clin Infect Dis 2006, 42:1608-
1618 http://dx.doi.org/10.1086/503914.

24. Jensen MA, Coetzer M, van’t Wout AB, Morris L, Mullins JI: A
reliable phenotype predictor for human immunodeficiency
virus type 1 subtype C based on envelope V3 sequences. J Virol
2006, 80:4698-4704 http://dx.doi.org/10.1128/JVI.80.10.4698-
4704.2006.
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