116 research outputs found

    Ternary nucleation of H_2SO_4, NH_3 and H_2O

    Get PDF
    A classical theory of the ternary homogeneous nucleation of sulfuric acid—ammonia—water is presented. For NH3 mixing ratios exceeding 1 ppt, the presence of ammonia enhances the binary (sulfuric acid—water) nucleation rate by several orders of magnitude. However, the limiting component for ternary nucleation—as for binary nucleation—is sulfuric acid. The sulfuric acid concentration needed for significant ternary nucleation is several orders of magnitude below that required in binary case

    New particle formation in air mass transported between two measurement sites in Northern Finland

    Get PDF
    This study covers four years of aerosol number size distribution data from Pallas and Värriö sites 250 km apart from each other in Northern Finland and compares new particle formation events between these sites. In air masses of eastern origin almost all events were observed to start earlier at the eastern station Värriö, whereas in air masses of western origin most of the events were observed to start earlier at the western station Pallas. This demonstrates that particle formation in a certain air mass type depends not only on the diurnal variation of the parameters causing the phenomenon (such as photochemistry) but also on some properties carried by the air mass itself. The correlation in growth rates between the two sites was relatively good, which suggests that the amount of condensable vapour causing the growth must have been at about the same level in both sites. The condensation sink was frequently much higher at the downwind station. It seems that secondary particle formation related to biogenic sources dominate in many cases over the particle sinks during the air mass transport between the sites. Two cases of transport from Pallas to Värriö were further analysed with an aerosol dynamics model. The model was able to reproduce the observed nucleation events 250 km down-wind at Värriö but revealed some differences between the two cases. The simulated nucleation rates were in both cases similar but the organic concentration profiles that best reproduced the observations were different in the two cases indicating that divergent formation reactions may dominate under different conditions. The simulations also suggested that organic compounds were the main contributor to new particle growth, which offers a tentative hypothesis to the distinct features of new particles at the two sites: Air masses arriving from the Atlantic Ocean typically spent approximately only ten hours over land before arriving at Pallas, and thus the time for the organic vapours to accumulate in the air and to interact with the particles is relatively short. This can lead to low nucleation mode growth rates and even to suppression of detectable particle formation event due to efficient scavenging of newly formed clusters, as was observed in the case studies

    Measurements of optical properties of atmospheric aerosols in Northern Finland

    Get PDF
    International audienceThree years of continuous measurements of aerosol optical properties and simultaneous aerosol number size distribution measurements at Pallas GAW station, a remote subarctic site in the northern border of the boreal forest zone, have been analysed. The scattering coefficient at 550 nm varied from 0.2 to 94.4 Mm?1 with an average of 7.1±8.6 Mm?1. Both the scattering and backscattering coefficients had a clear seasonal cycle with an autumn minimum and a 4?5 times higher summer maximum. The scattering was dominated by submicron aerosols and especially so during late summer and autumn. The Ångström exponent had a clear seasonal pattern with maximum values in late summer and minimum values during wintertime. The highest hemispheric backscattering fraction values were observed in autumn, indicating clean air with few scattering particles and a particle size distribution strongly dominated by ultrafine particles. To analyse the influence of air mass origin on the aerosol optical properties a trajectory climatology was applied to the Pallas aerosol data. The most polluted trajectory patterns represented air masses from the Kola Peninsula, Scandinavia and Russia as well as long-range transport from Britain and Eastern Europe. These air masses had the largest average scattering and backscattering coefficients for all seasons. Higher than average values of the Ångström exponent were also observed in connection with transport from these areas

    Airborne measurements of nucleation mode particles I: coastal nucleation and growth rates

    No full text
    International audienceA light aircraft was equipped with a bank of Condensation Particle Counters (CPCs) (50% cut from 3?5.4?9.6 nm) and a nano-Scanning Mobility Particle Sizer (nSMPS) and deployed along the west coast of Ireland, in the vicinity of Mace Head. The objective of the exercise was to provide high resolution micro-physical measurements of the coastal nucleation mode in order to map the spatial extent of new particle production regions and to evaluate the evolution, and associated growth rates of the coastal nucleation-mode aerosol plume. Results indicate that coastal new particle production is occurring over most areas along the land-sea interface with peak concentrations at the coastal plume-head in excess of 106 cm?3. Pseudo-Lagrangian studies of the coastal plume evolution illustrated significant growth of new particles to sizes in excess of 8 nm approximately 10 km downwind of the source region. Close to the plume head (?1, decreasing gradually to 53?72 nm h?1 at 3 km. Further along the plume, at distances up to 10 km, the growth rates are calculated to be 17?32 nm h?1. Growth rates of this magnitude suggest that after a couple of hours, coastal nucleation mode particles can reach significant sizes where they can contribution to the regional aerosol loading

    One year boundary layer aerosol size distribution data from five nordic background stations

    Get PDF
    International audienceSize distribution measurements performed at five different stations have been investigated during a one-year period between 01 June 2000 and 31 May 2001 with focus on diurnal, seasonal and geographical differences of size distribution properties. The stations involved cover a large geographical area ranging from the Finnish Lapland (67º N) down to southern Sweden (56º N) in the order Värriö, Pallas, Hyytiälä, Aspvreten and Vavihill. The shape of the size distribution is typically bimodal during winter with a larger fraction of accumulation mode particles compared to the other seasons. Highest Aitken mode concentration is found during summer and spring during the year of study. The maximum of nucleation events occur during the spring months at all stations. Nucleation events occur during other months as well, although not as frequently. Large differences were found between different categories of stations. Northerly located stations such as Pallas and Värriö presented well-separated Aitken and accumulation modes, while the two modes often overlap significantly at the two southernmost stations Vavihill and Aspvreten. A method to cluster trajectories was used to analyse the impact of long-range transport on the observed aerosol properties. Clusters of trajectories arriving from the continent were clearly associated with size distributions shifted towards the accumulation mode. This feature was more pronounced the further south the station was located. Marine- or Arctic-type clusters were associated with large variability in the nuclei size ranges. A quasi-lagrangian approach was used to investigate transport related changes in the aerosol properties. Typically, an increase in especially Aitken mode concentrations was observed when advection from the north occurs, i.e. allowing more continental influence on the aerosol when comparing the different measurement sites. When trajectory clusters arrive to the stations from SW, a gradual decrease in number concentration is experienced in all modes as latitude of measurement site increases

    Homogeneous nucleation of sulfuric acid and water mixture: experimental setup and first results

    Get PDF
    In this study we introduce a new flow tube suitable for binary and ternary homogeneous nucleation studies. The production of sulfuric acid and water vapor mixture, the experimental setup and the method of sulfuric acid concentration determination are discussed in detail. Wall losses were estimated from the measured sulfuric acid concentration profiles along the flow tube and compared to a theoretical prediction. In this investigation the experimental evidence of new particle formation was observed at a concentration of 10<sup>9</sup> molecules cm<sup>−3</sup> of sulfuric acid and the nucleation rates measured at three relative humidities (RH) 10, 30 and 50%, cover six orders of magnitude, from 10<sup>−3</sup> to 10<sup>3</sup> particles cm<sup>−3</sup>. Particle free air was used as a carrier gas. Our initial results are compared to the theoretical prediction of binary homogeneous nucleation, to results obtained by other investigators, and to atmospheric nucleation

    Spared Nerve Injury Causes Sexually Dimorphic Mechanical Allodynia and Differential Gene Expression in Spinal Cords and Dorsal Root Ganglia in Rats

    Get PDF
    Neuropathic pain is more prevalent in women. However, females are under-represented in animal experiments, and the mechanisms of sex differences remain inadequately understood. We used the spared nerve injury (SNI) model in rats to characterize sex differences in pain behaviour, unbiased RNA-Seq and proteomics to study the mechanisms. Male and female rats were subjected to SNI- and sham-surgery. Mechanical and cold allodynia were assessed. Ipsilateral lumbar dorsal root ganglia (DRG) and spinal cord (SC) segments were collected for RNA-seq analysis with DESeq2 on Day 7. Cerebrospinal fluid (CSF) samples for proteomic analysis and DRGs and SCs for analysis of IB-4 and CGRP, and IBA1 and GFAP, respectively, were collected on Day 21. Females developed stronger mechanical allodynia. There were no differences between the sexes in CGRP and IB-4 in the DRG or glial cell markers in the SC. No CSF protein showed change following SNI. DRG and SC showed abundant changes in gene expression. Sexually dimorphic responses were found in genes related to T-cells (cd28, ctla4, cd274, cd4, prf1), other immunological responses (dpp4, c5a, cxcr2 and il1b), neuronal transmission (hrh3, thbs4, chrna4 and pdyn), plasticity (atf3, c1qc and reg3b), and others (bhlhe22, mcpt1l, trpv6). We observed significantly stronger mechanical allodynia in females and numerous sexually dimorphic changes in gene expression following SNI in rats. Several genes have previously been linked to NP, while some are novel. Our results suggest gene targets for further studies in the development of new, possibly sex-specific, therapies for NP.Peer reviewe

    The air pressure effect on the homogeneous nucleation of carbon dioxide by molecular simulation

    Full text link
    Vapour-liquid equilibria (VLE) and the influence of an inert carrier gas on homogeneous vapour to liquid nucleation are investigated by molecular simulation for quaternary mixtures of carbon dioxide, nitrogen, oxygen, and argon. Canonical ensemble molecular dynamics simulation using the Yasuoka-Matsumoto method is applied to nucleation in supersaturated vapours that contain more carbon dioxide than in the saturated state at the dew line. Established molecular models are employed that are known to accurately reproduce the VLE of the pure fluids as well as their binary and ternary mixtures. On the basis of these models, also the quaternary VLE properties of the bulk fluid are determined with the Grand Equilibrium method. Simulation results for the carrier gas influence on the nucleation rate are compared with the classical nucleation theory (CNT) considering the "pressure effect" [Phys. Rev. Lett. 101: 125703 (2008)]. It is found that the presence of air as a carrier gas decreases the nucleation rate only slightly and, in particular, to a significantly lower extent than predicted by CNT. The nucleation rate of carbon dioxide is generally underestimated by CNT, leading to a deviation between one and two orders of magnitude for pure carbon dioxide in the vicinity of the spinodal line and up to three orders of magnitude in presence of air as a carrier gas. Furthermore, CNT predicts a temperature dependence of the nucleation rate in the spinodal limit, which cannot be confirmed by molecular simulation

    Morphine-3-glucuronide causes antinociceptive cross-tolerance to morphine and increases spinal substance P expression

    Get PDF
    Morphine-3-glucuronide (M3G), the main metabolite of morphine, has been implicated in the development of tolerance and of opioid-induced hyperalgesia, both limiting the analgesic use of morphine. We evaluated the acute and chronic effects of M3G and morphine as well as development of antinociceptive cross-tolerance between morphine and M3G after intrathecal administration and assessed the expression of pain-associated neurotransmitter substance P in the spinal cord. Sprague-Dawley rats received intrathecal M3G or morphine twice daily for 6 days. Nociception and tactile allodynia were measured with von Frey filaments after acute and chronic treatments. Substance P levels in the dorsal horn of the spinal cord were determined by immunohistochemistry after 4-day treatments. Acute morphine caused antinociception as expected, whereas acute M3G caused tactile allodynia, as did both chronic M3G and morphine. Chronic M3G also induced antinociceptive cross-tolerance to morphine. M3G and morphine increased substance P levels similarly in the nociceptive laminae of the spinal cord. This study shows that chronic intrathecal M3G sensitises animals to mechanical stimulation and elevates substance P levels in the nociceptive laminae of the spinal cord. Chronic M3G also induces antinociceptive cross-tolerance to morphine. Thus, chronic M3G exposure might contribute to morphine-induced tolerance and opioid-induced hyperalgesia.Peer reviewe

    Results from the CERN pilot CLOUD experiment

    Get PDF
    During a 4-week run in October–November 2006, a pilot experiment was performed at the CERN Proton Synchrotron in preparation for the Cosmics Leaving OUtdoor Droplets (CLOUD) experiment, whose aim is to study the possible influence of cosmic rays on clouds. The purpose of the pilot experiment was firstly to carry out exploratory measurements of the effect of ionising particle radiation on aerosol formation from trace H2SO4 vapour and secondly to provide technical input for the CLOUD design. A total of 44 nucleation bursts were produced and recorded, with formation rates of particles above the 3 nm detection threshold of between 0.1 and 100 cm−3 s−1, and growth rates between 2 and 37 nm h−1. The corresponding H2SO4 concentrations were typically around 106 cm−3 or less. The experimentally-measured formation rates and H2SO4 concentrations are comparable to those found in the atmosphere, supporting the idea that sulphuric acid is involved in the nucleation of atmospheric aerosols. However, sulphuric acid alone is not able to explain the observed rapid growth rates, which suggests the presence of additional trace vapours in the aerosol chamber, whose identity is unknown. By analysing the charged fraction, a few of the aerosol bursts appear to have a contribution from ion-induced nucleation and ion-ion recombination to form neutral clusters. Some indications were also found for the accelerator beam timing and intensity to influence the aerosol particle formation rate at the highest experimental SO2 concentrations of 6 ppb, although none was found at lower concentrations. Overall, the exploratory measurements provide suggestive evidence for ion-induced nucleation or ion-ion recombination as sources of aerosol particles. However in order to quantify the conditions under which ion processes become significant, improvements are needed in controlling the experimental variables and in the reproducibility of the experiments. Finally, concerning technical aspects, the most important lessons for the CLOUD design include the stringent requirement of internal cleanliness of the aerosol chamber, as well as maintenance of extremely stable temperatures (variations below 0.1 _C)
    corecore