20 research outputs found

    Separation of Drugs by Commercial Nanofiltration Membranes and Their Modelling

    No full text
    Pharmaceutical drugs have recently emerged as one the foremost water pollutants in the environment, triggering a severe threat to living species. With their complex chemical nature and the intricacy involved in the removal process in mind, the present work investigates the performance of commercially available polyamide thin-film composite tubular nanofiltration (NF) membranes (AFC 40 and AFC 80) in removing polluting pharmaceutical drugs, namely caffeine, paracetamol and naproxen. The structural parameters of the NF membranes were estimated by water permeability measurements and retention measurements with aqueous solutions of organic, uncharged (glycerol) solutes. The effect of various operating conditions on the retention of solutes by the AFC 40 and AFC 80 membranes, such as applied transmembrane pressure, tangential feed flow velocity, feed solution concentration and ionic strength, were evaluated. It was found that the rejection of drugs was directly proportional to transmembrane pressure and feed flow rate. Due to the size difference between caffeine (MW = 194.9 g/mol), naproxen (MW = 230.2 g/mol) and paracetamol (MW = 151.16 g/mol), the AFC 40 membrane proved to be efficient for caffeine and naproxen, with rejection efficiencies of 88% and 99%, respectively. In contrast, the AFC 80 membrane proved to be better for paracetamol, with a rejection efficiency of 96% (and rejection efficiency of 100% for caffeine and naproxen). It was also observed that the rejection efficiency of the AFC 80 membrane did not change with changes in external operating conditions compared to the AFC 40 membrane. The membrane performance was predicted using the Spiegler–Kedem model based on irreversible thermodynamics, which was successfully used to explain the transport mechanism of solutes through the AFC 40 and AFC 80 membranes in the NF process

    Preparation and characterization of chitosan thin films on mixed-matrix membranes for complete removal of chromium

    No full text
    Herein we present a new approach for the complete removal of CrVI species, through reduction of CrVI to CrIII, followed by adsorption of CrIII. Reduction of chromium from water is an important challenge, as CrIV is one of the most toxic substances emitted from industrial processes. Chitosan (CS) thin films were developed on plain polysulfone (PSf) and PSf/TiO2 membrane substrates by a temperature-induced technique using polyvinyl alcohol as a binder. Structure property elucidation was carried out by X-ray diffraction, microscopy, spectroscopy, contact angle measurement, and water uptake studies. The increase in hydrophilicity followed the order: PSf < PSf/TiO2 < PSf/TiO2/CS membranes. Use of this thin-film composite membrane for chromium removal was investigated with regards to the effects of light and pH. The observations reveal 100 % reduction of CrVI to CrIII through electrons and protons donated from OH and NH2 groups of the CS layer; the reduced CrIII species are adsorbed onto the CS layer via complexation to give chromium-free water

    Towards a Real-Time Campus-Scale Water Balance Monitoring System

    No full text
    In this paper, we describe the design of a real time water balance monitoring system, suitable for large campuses. The battery operated sensor nodes consist of an ultra-sound level sensor, a 16-bit microcontroller and a sub-gigahertz radio to setup a hub and spoke system. Real time data from the sensors is pushed to a server on the cloud to log as well as perform analytics. Industrial design of the device allows flexible mounting on a variety of tanks. Experimental results from a trial deployment in a medium sized campus are shown to illustrate the usefulness of such a system towards better management of campus water resources

    Osseointegrative and antimicrobial properties of graphene oxide nano coated dental implants: A systematic review

    No full text
    Osseointegration stands as a pivotal concept within the realm of dental implants, signifying the intricate process through which a dental implant integrates with the adjoining bone tissue. Graphene oxide (GO) has been shown to promote osseointegration, the process by which the implant fuses with the surrounding bone. The objective of this study was to assess the osseointegrative and antimicrobial properties of GO nano coated dental implants. A systematic search was conducted using electronic databases (e.g., PubMed, Scopus, Web of Science) to identify relevant studies published. Inclusion criteria encompassed studies that evaluated the effects of GO nano coating on osseointegrative and antimicrobial characteristics of dental implants. Studies not written in English and published before 2012 were excluded.Results: The initial search yielded a total of 127 potential studies, of which six met the inclusion criteria and five were included in the review. These studies provided data on GO nano coated dental implants and their osseointegrative and antimicrobial properties. All the included studies showed moderate risk of bias. None of the studies provided information related to sample size calculation or sampling technique.The findings from the included studies demonstrated that GO nano coating had a positive impact on osseointegrative properties of dental implants. Enhanced bone-implant contact and increased bone density were observed in animals and humans receiving GO nano coated implants. Furthermore, the antimicrobial properties of GO nano coating were found to inhibit bacterial colonization and biofilm formation on the implant surface, reducing the risk of implant-associated infections.The findings indicate that GO nano coating holds promise in enhancing the success rate and longevity of dental implants. However, more studies with larger sample sizes, are needed to further strengthen the evidence and determine the long-term effects of GO nano coated dental implants.</p

    Novel α + β Type Ti-Fe-Cu Alloys Containing Sn with Pertinent Mechanical Properties

    No full text
    Rising demand for bone implants has led to the focus on future alternatives of alloys with better biocompatibility and mechanical strength. Thus, this research is dedicated to the synthesis and investigation of new compositions for low-alloyed Ti-based compounds, which conjoin relatively acceptable mechanical properties and low elastic moduli. In this regard, the structural and mechanical properties of &alpha; + &beta; Ti-Fe-Cu-Sn alloys are described in the present paper. The alloys were fabricated by arc-melting and tilt-casting techniques which followed subsequent thermo-mechanical treatment aided by dual-axial forging and rolling procedures. The effect of the concentrations of the alloying elements, and other parameters, such as regimes of rolling and dual-axial forging operation, on the microstructure and mechanical properties were thoroughly investigated. The Ti94Fe1Cu1Sn4 alloy with the most promising mechanical properties was subjected to thermo-mechanical treatment. After a single rolling procedure at 750 &deg;C, the alloy exhibited tensile strength and tensile plasticity of 1300 MPa and 6%, respectively, with an elastic modulus of 70 GPa. Such good tensile mechanical properties are explained by the optimal volume fraction balance between &alpha; and &beta; phases and the texture alignment obtained, providing superior alternatives in comparison to pure &alpha;- titanium alloys
    corecore