40 research outputs found

    Climate and Air Quality Impacts of Combined Climate Change and Air Pollution Policy Scenarios

    Get PDF
    This report describes an assessment of the co-benefits for air pollution of recently developed climate mitigation scenarios that inform the European Union policy making. The climate mitigation scenarios were obtained with the POLES equilibrium model for a business-as-usual and greenhouse gas reduction case. In the present work, these scenarios were expanded to air pollution emissions. The resulting set of global -spatially and sector disaggregated- air pollution emissions were evaluated with the global chemistry transport model TM5, to calculate levels of particulate matter and ozone. Subsequently, air pollution impacts on human health, ecosystems and climate were evaluated. The resulting set of four scenarios thus reflect various combinations of worldwide air pollution and climate policies: BAU (¿no further climate and air pollution policies since the 2000 base-year¿); CARB (¿climate policy only¿), BAP (¿no further climate policy, but progressive air pollution policies, to address worldwide increasing levels of air pollution) and CAP (¿combination of ambitious climate and air pollution policies¿). The implementation of a global climate policy (CARB) has substantial co-benefits for reducing air pollutant emissions. Compared to BAU, in 2050 global emissions of SO2 are reduced by ca. 75 %, NOx by 55 %, CO (40 %) and other pollutants VOC, OC and BC) about 25% %. These emission reductions result from cleaner technologies and decreased fuel demand, and correspond to a CO2 emission reduction of more than 60 %. Advanced air pollution abatement technologies can obtain similar air pollutant reductions ranging between 35 % (NOx), 45 % (OC, BC), 60 % (SO2) and 70% (CO), however in this case the CO2 emissions reach unabated levels of 55 Pg CO2/yr. The combined air pollution and climate policy case (CAP) further reduces BAP air pollution emissions by 10-30 %. Noticeable are the decreases of methane emissions by ca. 60 %, which have important impacts on ozone air quality and climate. The environmental benefits of the emission reductions are substantial. In 2050, average global life expectancy increases by 3.2 months/person for BAP (compared to BAU) and further increases by 3.7 to 6.9 months/person if additionally climate policies are introduced (CAP). Compared to 2000, only the CAP scenario leads to global improvement of life-expectancy (by about 3 months/person), while all other scenarios lead to higher particulate concentration and lower life expectancies, mainly driven by pollution developments in South and East Asia. These improvements in CAP are due to decreasing concentrations of primary (OC, BC) and secondary (SO4, NO3) aerosol. This work shows that combining air pollution and climate policies is in some regions the only way to stabilize or decrease the levels of air pollution and reducing impacts on human health. The global average life expectancy, however, masks large regional differences: e.g. current and future levels of air pollution in Asia are much larger than in Europe or the United States. Crop losses due to ozone are reduced by 4.7 % by implementing progressive air pollution policies, and could be reduced by another 2 %, by introducing additional climate policies. Climate policies target at limiting long-term (2100) climate change. On the intermediate time-scales (2030-2050), however, there might be important trade-offs to be considered in climate and air pollution policies, since reducing particulate matter and precursor (especially sulfur) emissions, are likely to lead to a net positive radiative forcing and a warming of climate. Since reductions of particulate matter and ozone are necessary to protect human health and vegetation, combined air pollution and climate policies are more beneficial for both climate and air pollution than stand-alone policies. There is scope to preferentially mitigate emissions of Black Carbon and methane, which is beneficial for climate and human health.JRC.DDG.H.2-Climate chang

    What Can We Learn about Ship Emission Inventories from Measurements of Air Pollutants over the Mediterranean Sea?

    Get PDF
    Ship emission estimates diverge widely for all chemical compounds for several reasons: use of different methodologies (bottom-up or top-down), activity data and emission factors can easily result in a difference from a factor of 1.5 to two orders of magnitude. Despite these large discrepancies in existing ship emission inventories for air pollutants very little has been done to evaluate their consistency with atmospheric measurements at open sea. Combining three sets of observational data ¿ ozone and black carbon measurements sampled at three coastal sites and on board of a Mediterranean cruise ship, as well as satellite observations of atmospheric NO2 column concentration over the same area ¿ we assess the accuracy of the three most commonly used ship emission inventories, EDGAR FT (Olivier et al., 2005), emissions described by Eyring et al. (2005) and emissions reported by EMEP (Vestreng et al., 2007). Our tool is a global atmospheric chemistry transport model which simulates the chemical state of the Mediterranean atmosphere applying different ship emission inventories. The simulated contributions of ships to air pollutant levels in the Mediterranean atmosphere are significant but strongly depend on the inventory applied. Close to the major shipping routes relative contributions vary from 10 to 50% for black carbon and from 2 to 12% for ozone in the surface layer, as well as from 5 to 20% for nitrogen dioxide atmospheric column burden. The relative contributions are still significant over the North African coast, but less so over the South European coast. The observations poorly constrain the ship emission inventories in the Eastern Mediterranean where the influence of uncertain land based emissions, the model transport and wet deposition are at least as important as the signal from ships. In the Western Mediterranean, the regional EMEP emission inventory gives the best match with most measurements, followed by Eyring for NO2 and ozone and by EDGAR for black carbon. Given the uncertainty of the measurements and the model, each of the three emission inventories could actually be right, implying that large uncertainties in ship emissions need to be considered for future scenario analysis.JRC.H.2-Climate chang

    Evidence of temperature-dependent effects on the estrogenic response of fish: implications with regard to climate change

    Get PDF
    The official published version can be obtained from the link below - Copyright @ 2008 Elsevier BV.Chemical risk assessment is fraught with difficulty due to the problem of accounting for the effects of mixtures. In addition to the uncertainty arising from chemical-to-chemical interactions, it is possible that environmental variables, such as temperature, influence the biological response to chemical challenge, acting as confounding factors in the analysis of mixture effects. Here, we investigate the effects of temperature on the response of fish to a defined mixture of estrogenic chemicals. It was anticipated that the response to the mixture may be exacerbated at higher temperatures, due to an increase in the rate of physiological processing. This is a pertinent issue in view of global climate change. Fathead minnows (Pimephales promelas) were exposed to the mixture in parallel exposure studies, which were carried out at different temperatures (20 and 30 degrees C). The estrogenic response was characterised using an established assay, involving the analysis of the egg yolk protein, vitellogenin (VTG). Patterns of VTG gene expression were also analysed using real-time QPCR. The results revealed that there was no effect of temperature on the magnitude of the VTG response after 2 weeks of chemical exposure. However, the analysis of mixture effects at two additional time points (24 h and 7 days) revealed that the response was induced more rapidly at the higher temperature. This trend was apparent from the analysis of effects both at the molecular and biochemical level. Whilst this indicates that climatic effects on water temperature are not a significant issue with regard to the long-term risk assessment of estrogenic chemicals, the relevance of short-term effects is, as yet, unclear. Furthermore, analysis of the patterns of VTG gene expression versus protein induction gives an insight into the physiological mechanisms responsible for temperature-dependent effects on the reproductive phenology of species such as roach. Hence, the data contribute to our understanding of the implications of global climate change for wild fish populations.This work was funded by a grant from the Natural Environment Research Council NE/D00389X/1). Additional support was provided by a small research grant from the Fisheries Society of the British Isles

    Renal artery reconstruction for the preservation of renal function

    Get PDF
    AbstractPurpose: We reviewed a 13-year experience with an emphasis on long-term survival and renal function response when renal artery reconstruction (RAR) was performed primarily for the preservation or restoration of renal function in patients who had atherosclerotic renovascular disease.Methods: From January 1, 1980, to June 30, 1993, 139 patients underwent RAR for renal function salvage and were retrospectively reviewed. Inclusion criteria were either preoperative serum creatinine level >2.0 mg/dl (67% of patients) or RAR to the entire functioning renal mass irrespective of baseline renal function. Patient survival was calculated by life-table methods. Cox regression analysis was used to determine relative risk (RR) estimates for the late outcomes of continued deterioration of renal function and late survival after RAR. A logistic regression model was used to evaluate variables associated with perioperative complications.Results: Clinical characteristics of the cohort were notable for advanced cardiac (history of congestive heart failure, 27%; angina, 22%; previous myocardial infarction, 19%) and renal disease (serum creatinine level <2.0 mg/dl, 33%; 2.0 mg/dl to 3.0 mg/dl, 40%, >3.0 mg/dl, 27%). Cardiac disease was the principle cause of early (6 of 11 operative deaths) and late death. Operative management consisted of aortorenal bypass in 47%, extraanatomic bypass in 45%, and endarterectomy in 8%; 45% of patients required combined aortic and RAR. The operative mortality rate was 8%; significant perioperative renal dysfunction occurred in 10%. Major operative morbidity was associated with increasing azotemia (RR = 2.1; p = 0.001; 95% confidence interval [CI], 1.3 to 4.7 for each 1.0 mg/dl increase in baseline creatinine level). Of those patients who had a baseline creatinine level ≥2.0 mg/dl, 54% had ≥20% reduction in creatinine level after RAR. Late follow-up data were available for 87% of operative survivors at a mean duration of 4 years (range, 6 weeks to 12.6 years). Actuarial survival at 5 years was 52% ± 5%. Continued deterioration in renal function occurred in 24% of patients who survived operation, and eventual dialysis was required in 15%. Deterioration of renal function after RAR was associated with increasing levels of preoperative creatinine (RR = 1.6; 95% CI, 1.2 to 1.8; p = 0.001 for each 1.0 mg/dl increment in baseline creatinine level), and inversely related to early postoperative improvement in creatinine level (RR = 0.41; 95% CI, 0.2 to 0.9; p = 0.04).Conclusions: Intervention before major deterioration in renal function and an aggressive posture toward the frequently associated coronary artery disease are necessary to improve long-term results when RAR is performed for renal function salvage. (J Vasc Surg 1996;24:371-82.

    Equations for smartphone prediction of adiposity and appendicular lean mass in youth soccer players

    No full text
    Abstract Digital anthropometry by three-dimensional optical imaging systems and smartphones has recently been shown to provide non-invasive, precise, and accurate anthropometric and body composition measurements. To our knowledge, no previous study performed smartphone-based digital anthropometric assessments in young athletes. The aim of this study was to investigate the reproducibly and validity of smartphone-based estimation of anthropometric and body composition parameters in youth soccer players. A convenience sample of 124 male players and 69 female players (median ages of 16.2 and 15.5 years, respectively) was recruited. Measurements of body weight and height, one whole-body Dual-Energy X-ray Absorptiometry (DXA) scan, and acquisition of optical images (performed in duplicate by the Mobile Fit app to obtain two avatars for each player) were performed. The reproducibility analysis showed percent standard error of measurement values < 10% for all anthropometric and body composition measurements, thus indicating high agreement between the measurements obtained for the two avatars. Mobile Fit app overestimated the body fat percentage with respect to DXA (average overestimation of + 3.7% in males and + 4.6% in females), while it underestimated the total lean mass (− 2.6 kg in males and − 2.5 kg in females) and the appendicular lean mass (− 10.5 kg in males and − 5.5 kg in females). Using data of the soccer players, we reparameterized the equations previously proposed to estimate the body fat percentage and the appendicular lean mass and we obtained new equations that can be used in youth athletes for body composition assessment through conventional anthropometrics-based prediction models
    corecore