11 research outputs found

    Mapping Solar Magnetic Fields from the Photosphere to the Base of the Corona

    Full text link
    Routine ultraviolet imaging of the Sun's upper atmosphere shows the spectacular manifestation of solar activity; yet we remain blind to its main driver, the magnetic field. Here we report unprecedented spectropolarimetric observations of an active region plage and its surrounding enhanced network, showing circular polarization in ultraviolet (Mg II hh & kk and Mn I) and visible (Fe I) lines. We infer the longitudinal magnetic field from the photosphere to the very upper chromosphere. At the top of the plage chromosphere the field strengths reach more than 300 gauss, strongly correlated with the Mg II kk line core intensity and the electron pressure. This unique mapping shows how the magnetic field couples the different atmospheric layers and reveals the magnetic origin of the heating in the plage chromosphere.Comment: 50 pages, 11 figures, 1 table, published in Science Advance

    The First Flight of the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS)

    Get PDF
    The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) sounding rocket experiment launched on July 30, 2021 from the White Sands Missile Range in New Mexico. MaGIXS is a unique solar observing telescope developed to capture X-ray spectral images, in the 6 - 24 Angstrom wavelength range, of coronal active regions. Its novel design takes advantage of recent technological advances related to fabricating and optimizing X-ray optical systems as well as breakthroughs in inversion methodologies necessary to create spectrally pure maps from overlapping spectral images. MaGIXS is the first instrument of its kind to provide spatially resolved soft X-ray spectra across a wide field of view. The plasma diagnostics available in this spectral regime make this instrument a powerful tool for probing solar coronal heating. This paper presents details from the first MaGIXS flight, the captured observations, the data processing and inversion techniques, and the first science results.Comment: 20 pages, 18 figure

    The First Flight of the Marshall Grazing Incidence X-Ray Spectrometer (MaGIXS)

    Get PDF
    The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) sounding rocket experiment launched on 2021 July 30 from the White Sands Missile Range in New Mexico. MaGIXS is a unique solar observing telescope developed to capture X-ray spectral images of coronal active regions in the 6–24 Å wavelength range. Its novel design takes advantage of recent technological advances related to fabricating and optimizing X-ray optical systems, as well as breakthroughs in inversion methodologies necessary to create spectrally pure maps from overlapping spectral images. MaGIXS is the first instrument of its kind to provide spatially resolved soft X-ray spectra across a wide field of view. The plasma diagnostics available in this spectral regime make this instrument a powerful tool for probing solar coronal heating. This paper presents details from the first MaGIXS flight, the captured observations, the data processing and inversion techniques, and the first science results

    Visualization 4: Photophysical characterization of sickle cell disease hemoglobin by multi-photon microscopy

    No full text
    Time lapse of higher concentration HbS sample solidifying out of solution to form fibers influence by externally applied, horizontal magnetic field. Originally published in Biomedical Optics Express on 01 October 2015 (boe-6-10-4098

    Visualization 1: Photophysical characterization of sickle cell disease hemoglobin by multi-photon microscopy

    No full text
    Time lapse of low concentration HbS sample solidifying out of solution to form clusters. Originally published in Biomedical Optics Express on 01 October 2015 (boe-6-10-4098

    Skeletal cell YAP and TAZ combinatorially promote bone development

    No full text
    The functions of the paralogous transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) in bone are controversial. Each has been observed to promote or inhibit osteogenesis in vitro, with reports of both equivalent and divergent functions. Their combinatorial roles in bone physiology are unknown. We report that combinatorial YAP/TAZ deletion from skeletal lineage cells, using Osterix-Cre, caused an osteogenesis imperfecta-like phenotype with severity dependent on allele dose and greater phenotypic expressivity with homozygous TAZ vs. YAP ablation. YAP/TAZ deletion decreased bone accrual and reduced intrinsic bone material properties through impaired collagen content and organization. These structural and material defects produced spontaneous fractures, particularly in mice with homozygous TAZ deletion and caused neonatal lethality in dual homozygous knockouts. At the cellular level in vivo, YAP/TAZ ablation reduced osteoblast activity and increased osteoclast activity, in an allele dose-dependent manner, impairing bone accrual and remodeling. Transcriptionally, YAP/TAZ deletion and small-molecule inhibition of YAP/TAZ interaction with the transcriptional coeffector TEAD reduced osteogenic and collagen-related gene expression, both in vivo and in vitro. These data demonstrate that YAP and TAZ combinatorially promote bone development through regulation of osteoblast activity, matrix quality, and osteoclastic remodeling.-Kegelman, C. D., Mason, D. E., Dawahare, J. H., Horan, D. J., Vigil, G. D., Howard, S. S., Robling, A. G., Bellido, T. M., Boerckel, J. D. Skeletal cell YAP and TAZ combinatorially promote bone development
    corecore