570 research outputs found

    CCR8 leads to eosinophil migration and regulates neutrophil migration in murine allergic enteritis

    Get PDF
    Allergic enteritis (AE) is a gastrointestinal form of food allergy. This study aimed to elucidate cellular and molecular mechanisms of AE using a murine model. To induce AE, BALB/c wild type (WT) mice received intraperitoneal sensitization with ovalbumin (an egg white allergen) plus ALUM and feeding an egg white (EW) diet. Microarray analysis showed enhanced gene expression of CC chemokine receptor (CCR) 8 and its ligand, chemokine CC motif ligand (CCL) 1 in the inflamed jejunum. Histological and FACS analysis showed that CCR8 knock out (KO) mice exhibited slightly less inflammatory features, reduced eosinophil accumulation but accelerated neutrophil accumulation in the jejunums, when compared to WT mice. The concentrations of an eosinophil chemoattractant CCL11 (eotaxin-1), but not of IL-5, were reduced in intestinal homogenates of CCR8KO mice, suggesting an indirect involvement of CCR8 in eosinophil accumulation in AE sites by inducing CCL11 expression. The potential of CCR8 antagonists to treat allergic asthma has been discussed. However, our results suggest that CCR8 blockade may promote neutrophil accumulation in the inflamed intestinal tissues, and not be a suitable therapeutic target for AE, despite the potential to reduce eosinophil accumulation. This study advances our knowledge to establish effective anti-inflammatory strategies in AE treatment.Fil: Blanco-Pérez, Frank. Paul-ehrlich-institut;Fil: Kato, Yoichiro. Tokyo Women's Medical University;Fil: Gonzalez-Menendez, Irene. Universitätsklinikum Tübingen Medizinische Fakultät;Fil: Laiño, Jonathan Emiliano. Paul-ehrlich-institut;Fil: Ohbayashi, Masaharu. Toyohashi Sozo University;Fil: Burggraf, Manja. Paul-ehrlich-institut;Fil: Krause, Maren. Paul-ehrlich-institut;Fil: Kirberg, Jörg. Paul-ehrlich-institut;Fil: Iwakura, Yoichiro. Tokyo University Of Science;Fil: Martella, Manuela. Universitätsklinikum Tübingen Medizinische Fakultät;Fil: Quintanilla-Martinez, Leticia. Universitätsklinikum Tübingen Medizinische Fakultät;Fil: Shibata, Noriyuki. Tokyo Women's Medical University;Fil: Vieths, Stefan. Paul-ehrlich-institut;Fil: Scheurer, Stephan. Paul-ehrlich-institut;Fil: Toda, Masako. Paul-ehrlich-institut; . Tohoku University

    Allergenicity assessment of genetically modified crops—what makes sense?

    Get PDF
    GM crops have great potential to improve food quality, increase harvest yields and decrease dependency on certain chemical pesticides. Before entering the market their safety needs to be scrutinized. This includes a detailed analysis of allergenic risks, as the safety of allergic consumers has high priority. However, not all tests currently being applied to assessing allergenicity have a sound scientific basis. Recent events with transgenic crops reveal the fallacy of applying such tests to GM crops

    Identification and molecular characterization of allergenic nsLTP from durum wheat (Triticum turgidum)

    Get PDF
    Background: Common wheat (Triticum aestivum) and durum wheat (T. turgidum) are both involved in Baker's asthma (BA) and food allergy (FA) including wheat-dependent exercise-induced asthma (WDEIA). However, allergens in durum wheat have not been described, and the over-expression of T. turgidum non-specific lipid-transfer protein (nsLTPs) is considered to increase resistance to phytopathogens. Objective: To identify and assess the allergenicity of nsLTP from T. turgidum. Methods: Recombinant T. turgidum nsLTP Tri tu 14 was generated and tested for structural integrity (circular dichroism-spectroscopy) and purity (SDS-PAGE). Thirty-two wheat allergic patients were enrolled: 20 Spanish patients (BA) with positive bronchial challenge to wheat flour, and 12 Italian patients (wheat FA/WDEIA) with positive double-blind placebo-controlled food challenge/open food challenge (OFC) to pasta. IgE values to wheat, Tri tu 14, Tri a 14 (T. aestivum) and Pru p 3 (P. persica) were determined by ImmunoCAP testing. Allergenic potency (in vitro mediator release) and IgE cross-reactivity were investigated. Results: Tri tu 14 was found to share 49% and 52% amino acid identity with Tri a 14 and Pru p 3, respectively. Among 25 Tri a 14 CAP positive sera, 23 (92%) were reactive to wheat extract, 22 (88%) to Tri tu 14 and 20 (80%) to Pru p 3. The correlation between Tri a 14 and Tri tu 14 specific IgE levels was r = 0.97 (BA) and r = 0.93 (FA/WDEIA), respectively. FA/WDEIA patients showed higher specific IgE values to Tri tu 14 and Pru p 3 than BA patients. Tri tu 14 displayed allergenic activity by mediator release from effector cells and IgE cross-reactivity with Pru p 3. The degree of IgE cross-reactivity between the two wheat nsLTPs varied between individual patients. Conclusions and Clinical Relevance: Sensitization to Tri tu 14 likely appears to be more important in wheat FA/WDEIA than in BA. Over-expression of Tri tu 14 in wheat would represent a risk for patients with nsLTP-mediated FA

    Influence heat-reflective coating on the decrease of heat losses of window constructions

    Get PDF
    Developed theoretical and methodological foundations of the optimal choice of space-planning and constructive decisions of low-rise buildings blocked type, aimed at improving efficiency of investment, energy and resource saving, creation of comfortable conditions for the population, ensure sustainable development of low-rise construction in the context of socio-economic priorities in the climatic zoning of the area of construction

    Influence of peanut matrix on stability of allergens in gastric-simulated digesta: 2S albumins are main contributors to the IgE reactivity of short digestion-resistant peptides

    Get PDF
    Background: Most food allergens sensitizing via the gastrointestinal tract are stable proteins that are resistant to pepsin digestion, in particular major peanut allergens, Ara h 2 and Ara h 6. Survival of their large fragments is essential for sensitizing capacity. However, the immunoreactive proteins/peptides to which the immune system of the gastrointestinal tract is exposed during digestion of peanut proteins are unknown. Particularly, the IgE reactivity of short digestion-resistant peptides (SDRPs; lt 10 kDa) released by gastric digestion under standardized and physiologically relevant in vitro conditions has not been investigated. Objective: The aim of this study was to investigate and identify digestion products of major peanut allergens and in particular to examine IgE reactivity of SDRPs released by pepsin digestion of whole peanut grains. Methods: Two-dimensional gel-based proteomics and shotgun peptidomics, immunoblotting with allergen-specific antibodies from peanut-sensitized patients, enzyme-linked immunosorbent inhibition assay and ImmunoCAP tests, including far ultraviolet-circular dichroism spectroscopy were used to identify and characterize peanut digesta. Results: Ara h 2 and Ara h 6 remained mostly intact, and SDRPs from Ara h 2 were more potent in inhibiting IgE binding than Ara h 1 and Ara 3. Ara h 1 and Ara h 3 exhibited sequential digestion into a series of digestion-resistant peptides with preserved allergenic capacity. A high number of identified SDRPs from Ara h 1, Ara h 2 and Ara h 3 were part of short continuous epitope sequences and possessed substantial allergenic potential. Conclusion and Clinical Relevance: Peanut grain digestion by oral and gastric phase enzymes generates mixture of products, where the major peanut allergens remain intact and their digested peptides have preserved allergenic capacity highlighting their important roles in allergic reactions to peanut.This is the peer-reviewed version of the following article: Prodić, I.; Stanić-Vučinić, D.; Apostolović, D.; Mihailović, J.; Radibratović, M.; Radosavljević, J.; Burazer, L.; Milcić, M.; Smiljanić, K.; van Hage, M.; Ćirković-Veličković, T. Influence of Peanut Matrix on Stability of Allergens in Gastric-Simulated Digesta: 2S Albumins Are Main Contributors to the IgE Reactivity of Short Digestion-Resistant Peptides. Clinical and Experimental Allergy 2018, 48 (6), 731–740. [https://doi.org/10.1111/cea.13113]

    Interplay between Affinity and Valency in Effector Cell Degranulation: A Model System with Polcalcin Allergens and Human Patient-Derived IgE Antibodies.

    Get PDF
    This is the accepted, uncopyedited version of the manuscript. The definitive version was published in The Journal of Immunology August 28, 2019, ji1900509; DOI: https://doi.org/10.4049/jimmunol.1900509Originally published in The Journal of Immunology. Bucaite G, Kang-Pettinger T, Moreira J, et al. Interplay between Affinity and Valency in Effector Cell Degranulation: A Model System with Polcalcin Allergens and Human Patient-Derived IgE Antibodies. J Immunol. 2019;203(7):1693-1700. doi:10.4049/jimmunol.1900509 The American Association of Immunologists, Inc.An allergic reaction is rapidly generated when allergens bind and cross-link IgE bound to its receptor FcεRI on effector cells, resulting in cell degranulation and release of proinflammatory mediators. The extent of effector cell activation is linked to allergen affinity, oligomeric state, valency, and spacing of IgE-binding epitopes on the allergen. Whereas most of these observations come from studies using synthetic allergens, in this study we have used Timothy grass pollen allergen Phl p 7 and birch pollen allergen Bet v 4 to study these effects. Despite the high homology of these polcalcin family allergens, Phl p 7 and Bet v 4 display different binding characteristics toward two human patient-derived polcalcin-specific IgE Abs. We have used native polcalcin dimers and engineered multimeric allergens to test the effects of affinity and oligomeric state on IgE binding and effector cell activation. Our results indicate that polcalcin multimers are required to stimulate high levels of effector cell degranulation when using the humanized RBL-SX38 cell model and that multivalency can overcome the need for high-affinity interactions.This work was supported by Medical Research Council Grant G1100090. G.B. was supported by a studentship from the King’s Bioscience Institute and by the Guy’s and St. Thomas’ Charity Prize Ph.D. Program in Biomedical and Translational Science. We acknowledge the support of the Centre for Biomolecular Spectroscopy, King’s College London, established with a Capital Award from the Wellcome Trust (Grant 085944)

    EAACI statement on the diagnosis, management and prevention of severe allergic reactions to COVID-19 vaccines

    Get PDF
    The first approved COVID-19 vaccines include Pfizer/BioNTech BNT162B2, Moderna mRNA-1273 and AstraZeneca recombinant adenoviral ChAdOx1-S. Soon after approval, severe allergic reactions to the mRNA-based vaccines that resolved after treatment were reported. Regulatory agencies from the European Union, Unites States and the United Kingdom agree that vaccinations are contraindicated only when there is an allergy to one of the vaccine components or if there was a severe allergic reaction to the first dose. This position paper of the European Academy of Allergy and Clinical Immunology (EAACI) agrees with these recommendations and clarifies that there is no contraindication to administer these vaccines to allergic patients who do not have a history of an allergic reaction to any of the vaccine components. Importantly, as is the case for any medication, anaphylaxis may occur after vaccination in the absence of a history of allergic disease. Therefore, we provide a simplified algorithm of prevention, diagnosis and treatment of severe allergic reactions and a list of recommended medications and equipment for vaccine centres. We also describe potentially allergenic/immunogenic components of the approved vaccines and propose a workup to identify the responsible allergen. Close collaboration between academia, regulatory agencies and vaccine producers will facilitate approaches for patients at risks, such as incremental dosing of the second injection or desensitization. Finally, we identify unmet research needs and propose a concerted international roadmap towards precision diagnosis and management to minimize the risk of allergic reactions to COVID-19 vaccines and to facilitate their broader and safer use
    corecore