6,338 research outputs found

    Chaos in black holes surrounded by gravitational waves

    Get PDF
    The occurrence of chaos for test particles moving around Schwarzschild black holes perturbed by a special class of gravitational waves is studied in the context of the Melnikov method. The explicit integration of the equations of motion for the homoclinic orbit is used to reduce the application of this method to the study of simple graphics.Comment: 15 pages, LaTex

    Andreev scattering in nanoscopic junctions at high magnetic fields

    Full text link
    We report on the measurement of multiple Andreev resonances at atomic size point contacts between two superconducting nanostructures of Pb under magnetic fields higher than the bulk critical field, where superconductivity is restricted to a mesoscopic region near the contact. The small number of conduction channels in this type of contacts permits a quantitative comparison with theory through the whole field range. We discuss in detail the physical properties of our structure, in which the normal bulk electrodes induce a proximity effect into the mesoscopic superconducting part.Comment: 4 page

    Magnetically assisted self-injection and radiation generation for plasma based acceleration

    Get PDF
    It is shown through analytical modeling and numerical simulations that external magnetic fields can relax the self-trapping thresholds in plasma based accelerators. In addition, the transverse location where self-trapping occurs can be selected by adequate choice of the spatial profile of the external magnetic field. We also find that magnetic-field assisted self-injection can lead to the emission of betatron radiation at well defined frequencies. This controlled injection technique could be explored using state-of-the-art magnetic fields in current/next generation plasma/laser wakefield accelerator experiments.Comment: 7 pages, 4 figures, accepted for publication in Plasma Physics and Controlled Fusio

    Magnetic control of particle-injection in plasma based accelerators

    Get PDF
    The use of an external transverse magnetic field to trigger and to control electron self-injection in laser- and particle-beam driven wakefield accelerators is examined analytically and through full-scale particle-in-cell simulations. A magnetic field can relax the injection threshold and can be used to control main output beam features such as charge, energy, and transverse dynamics in the ion channel associated with the plasma blowout. It is shown that this mechanism could be studied using state-of-the-art magnetic fields in next generation plasma accelerator experiments.Comment: 10 pages, 3 figure

    Responses of the haploid-to-diploid ratio of isomorphic biphasic life cycles to time instability

    Get PDF
    Previous modelling of the haploid-to-diploid ratio (H:D) in biphasic life cycles relied on estimates of the stable population growth rate and structure. This is a projective analysis that estimates the population dynamics given current conditions. However, the environment is rarely constant and has both periodicity and random instabilities. The objective of this work was to unveil how the H:D responds to them. It was found that ploidy phase dissimilarities on the demographic matrix and/or in the initial population structure cause an inevitable H:D time variability as a consequence of the life-cycle structure and independent of the environmental seasonal cycle. This variability depends on the type of life strategy, demographic processes involved and ploidy dissimilar vital rates. Furthermore, ploidy dissimilar fertility or growth rates cause cyclic oscillations mismatching the seasonal cycle, whereas ploidy dissimilarities in the ramet looping rates (survival related) induce a monotonical variation.Fundacao para a Ciencia e Tecnologia [SFRH/BD/19339/2004/MS47

    The chiral Anomalous Hall effect in re-entrant AuFe alloys

    Full text link
    The Hall effect has been studied in a series of AuFe samples in the re-entrant concentration range, as well as in part of the spin glass range. An anomalous Hall contribution linked to the tilting of the local spins can be identified, confirming theoretical predictions of a novel topological Hall term induced when chirality is present. This effect can be understood in terms of Aharonov-Bohm-like intrinsic current loops arising from successive scatterings by canted local spins. The experimental measurements indicate that the chiral signal persists, meaning scattering within the nanoscopic loops remains coherent, up to temperatures of the order of 150 K.Comment: 7 pages, 11 eps figures Published version. Minor change
    • …
    corecore