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Previous modelling of the haploid-to-diploid ratio (H:D) in biphasic life cycles relied on estimates of the
stable population growth rate and structure. This is a projective analysis that estimates the population
dynamics given current conditions. However, the environment is rarely constant and has both periodicity
and random instabilities. The objective of this work was to unveil how the H:D responds to them. It was
found that ploidy phase dissimilarities on the demographic matrix and/or in the initial population structure
cause an inevitable H:D time variability as a consequence of the life-cycle structure and independent of the
environmental seasonal cycle. This variability depends on the type of life strategy, demographic processes
involved and ploidy dissimilar vital rates. Furthermore, ploidy dissimilar fertility or growth rates cause
cyclic oscillations mismatching the seasonal cycle, whereas ploidy dissimilarities in the ramet looping
rates (survival related) induce a monotonical variation.
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1. Introduction

The majority of the more evolved life forms have diploid life cycles. Such is the case of animals,
most of the plants and many protists. Yet, it has not always been so. Plants first appeared about
500 m.y.a during the Palaeozoic era, Cambrian period. These were non-vascular plants (earlier
bryophytes) having haploid life cycles, which have persisted until now. The earlier vascular plants
emerged about 400 m.y.a during the Devonian period. These had haploid–diploid (biphasic)
life cycles, that is, alternated between haploid and diploid generations. It is considered to be
a generation when cells replicate suffering mitotic divisions and are able to sustain on their
own. The earlier vascular plants became extinct about 200 m.y.a during the Mesozoic era and late
Triassic early Jurassic period. These were replaced by the modern vascular plants with diploid life
cycles. Although absent in animals and plants, biphasic life cycles prevail in some fungi and many
protists. A few modelling-based theoretical studies propose biphasy advantages that may sustain
the prevalence of such life cycles [11,12,18]. In kelp (brown algae), the haploid (microscopic) and
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diploid (macroscopic) phases are heteromorphic, whereas in red algae the distinct ploidy phases
seem to be isomorphic.

Most of the analyses of demographic models of haploid–diploid life cycles have focused on
the stable population growth and structure [7,11,12,18,23,29,33,34]. These are projections of the
population structure at steady state if the vital rates remain unchanged. These are very helpful
in determining the key aspects governing the populations’ dynamics but must not be confounded
with forecasting. This is the case of the analyses carried out to determine as to why the haploid-
to-diploid ratio (H:D) of a large number of species with isomorphic biphasic life cycles varies,
when phases are expected to be ecologically undifferentiated [6,7,29,33,34]. Vieira and Santos
[33] determined several key aspects of the H:D dynamics: (i) the vital rates should be classified
as fertility, growth and looping types, the latter grouping stasis, breakage and clonal growth (i.e.
cycling in the same ploidy); (ii) life strategies could be classified as those of investment in fertility,
growth or looping; and (iii) the H:D is particularly responsive to ploidy phase dissimilarities in
looping. Hughes and Otto [12] also relied on steady-state population analysis to determine whether
biphasic life-cycle species must conditionally differentiate their haploid and diploid phases for
biphasy to prevail. Conditional differentiation means separate entities differentiating the way
they adapt to the environment in order to coexist, implying that if one is better at something, the
other is better at something else. During the last few decades, much evidence that haploids and
diploids of isomorphic biphasic life cycles conditionally differentiate morphologically and/or
physiologically has emerged, implying ploidy dissimilarities in the related vital rates [2,4,9,10,
13,16,17,19,20,24,26,27,30,32].

In demographic models, provided that the life cycle is irreducible, that is, all the stages contribute
to at least one other stage, and that the transitions among stages do not vary with time or density,
the population will approach asymptotically stable structure and growth rate [3]. Until then,
its trajectory will generally oscillate around a central tendency given by the asymptotic stable
trajectory. It is the transient phase during which the population trajectory and dynamics are
determined both by the life-cycle properties and by the initial population structure [3]. An H:D
time variability has been documented in seaweed species [5,6,15,25,26,28], possibly resulting
from conditional differentiation of ploidy phases in seasonal environments. Even under weak
seasonality, the environment is subject to the sporadic occurrence of extreme events. Most often,
the time-variant environment may be expected to drive a natural population from one transient
phase to another. Therefore, it is reasonable to expect populations of biphasic life-cycle algae
species to endure for more time at an unstable transient trajectory than at a stable one, highlighting
the relevance of understanding its dynamics.

The main questions investigated in this work are ‘How may dissimilarities between ploidy
phases drive an H:D variability under transient conditions?’ and ‘How does variability relate to
the different life strategies, that is, those dominated by fertility, growth or looping?’. To answer
these questions, the H:D variability was simulated using models previously developed by Vieira
and Santos [33,34]. It was tested for the effects of ploidy uneven initial population structures
and a ploidy conditional differentiation of the fertility, growth and looping rates. The oscillatory
properties of the transient phase of the H:D such as its duration, wave amplitude and wave length
were then analysed and related to the three basic life strategies, that is, those dominated by fertility,
growth or looping.

2. Methods

2.1. The matrix demographic model

The model used in this study is based on the biphasic life-cycle, stage/size-structured model
previously used by Vieira and Santos [33]. It is a simplification of a life cycle that is actually
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triphasic. Under the assumption the sex ratio is approximately constant and the male gametophytes
always produce enough spores to fertilize all the females, the carposporophyte phase may be
neglected. Hence, the model turns biphasic with the carpospores being considered the output of
the gametophyte fecundity. It is a ramet-based model, meaning that the units of the adult stages
are the individual fronds that may rise from the same holdfast. It is a deterministic demographic
model with a projection interval of one month represented by the eight-dimensional population
vector and the (8,8)-dimensional population matrix (Equation (1)). The haploids were separated
into tetraspores and gametophyte ramet stages (size classes) ‘1’, ‘2’ and ‘3’, whereas the diploids
were separated into carpospores and tetrasporophyte ramet stages ‘4’, ‘5’ and ‘6’. The growth
vital rates (g), the looping vital rates (l) and the spore survival (ss) are probabilities and hence
vary between 0 and 1. The g and l rates of each stage add up to survival, which cannot be higher
than 1. The model considered two ways by which a ramet may loop back: it may stay in the
same size class (stasis) or it may break to a smaller size class. The probability of stasis was
considered to be 0.75 × l for size classes 2 and 3, whereas the probability of breakage to smaller
stages was the remaining 0.25 × l. These probabilities were based on the analysis of the vital rates
of the red seaweed Gelidium sesquipedale [21]. It was verified that the model results were not
significantly altered when other probabilities were considered. The fecundity transitions (fecx)
are spore production rates and hence could theoretically vary between 0 and +∞. The ploidy
dissimilarities in fecundity, growth and looping rates were introduced by the coefficients dF , dg

and dl, respectively, representing the proportion of diploid vital rates relative to the haploid:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 dF × fec4 dF × fec5 dF × fec6

ss l l/4 l/8 0 0 0 0
0 g 3l/4 l/8 0 0 0 0
0 0 g 6l/8 0 0 0 0

0 fec1 fec2 fec3 0 0 0 0
0 0 0 0 ss dL × l dL × l/4 dL × l/8
0 0 0 0 0 dG × g dL × 3l/4 dL × l/8
0 0 0 0 0 0 dG × g dL × 6l/8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Tet.
1
2
3

dss.Carp.
d1.4
d2.5
d3.6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

Several thousands of different demographic matrices were assembled by choosing their entries
under the following conditions:

• Fecundities (i.e. spore production) were given a fixed value of 100 to the smaller size class,
of 500 to the medium one and of 1000 to the larger one. The values themselves were chosen
arbitrarily with the sole objective of reflecting that fecundity increases exponentially with the
ramet size. Still, care was taken to keep the values of the fecundities simple yet close to the
values observed by Santos and Nyman [21].

• Spore survival (ss) could range from 10−6 to 100. These encompass the spore survival range
observed for most seaweeds and were further expanded to the highest survival possible (100 =
1 = 100%). Testing a wide range of spore survival was fundamental because the H:D dynamics
varies extremely with the amount of fertility output [7,33,34].

• Growth (g) and looping (l) could range from 0 to 1. These were chosen to test the vital rates in
a wide range of values.

• The dissimilarity coefficients dF , dG and dL were tested for values between 0 and 2; that is, the
diploid vital rates were from 0% to 200% of the haploid vital rates. Still, only over the fertility
rates may reasonably be expected the occurrence of ploidy dissimilarities largely different from
100%. Therefore, only over dF were tested values largely different from 1.

Many of the demographic matrices obtained were widely different from reality . To select only
the credible ones, two extra criteria were followed: (i) the asymptotic population growth rate (λ)
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could not be lower than 1 as this corresponds to populations going extinct and (ii) λ could not be
higher than 1.1 as this corresponds to demographic burst (at a 1-month projection interval). λ was
estimated as the dominant eigenvalue extracted from the demographic matrix [3].

The selected demographic matrices were plotted in a ternary plot (also called triangular plot or
triplot) of the elasticities of λ to fertility, growth and looping parameters as proposed by Caswell
[3], Franco and Silvertone [8] and Oostermeijer et al. [14]. The populations much more elastic
to only one type of vital rates are located closer to the respective vertices of the triangle. It is an
estimator of the type of life strategy [3,8,14,33,34].

Ploidy dissimilarities in the initial population structure were imposed by the dissimilarity
coefficients dS , d1, d2 and d3, setting the proportionality between the haploid and diploid initial
abundances.

2.2. Analytical solution of the transient phase

The population’s structure and abundance at a given time t are given by the vector Nt , which is a
function of the eigenvalues (λi) and eigenvectors (wi) extracted from the respective demographic
matrix and the coefficients for the initial conditions (ci):

Nt = caλ
t
a

⎡
⎢⎢⎢⎢⎢⎢⎣

w1

w2
...
...

w8

⎤
⎥⎥⎥⎥⎥⎥⎦

a

+ cbλ
t
b

⎡
⎢⎢⎢⎢⎢⎢⎣

w1

w2
...
...

w8

⎤
⎥⎥⎥⎥⎥⎥⎦

b

+ · · · + ciλ
t
i

⎡
⎢⎢⎢⎢⎢⎢⎣

w1

w2
...
...

w8

⎤
⎥⎥⎥⎥⎥⎥⎦

h

. (2)

λ, w and c have two possible forms: as a strictly real set or as a set of complex conjugated pairs.
In the first case, they can be written exactly as in Equation (2) or transposed to polar coordinates
where ci = γi × sen(ρi) and wi = σi × sen(ωj). In the latter case, the complex conjugated pair
(Equation (3a)) can be rearranged with the eigenvectors and c coefficients in Cartesian coordinates
or in polar coordinates (Equation (3b)), where λ and θ are the ith eigenvalue’s module and angle,
γ and ρ are, respectively, the ci coefficient’s module and angle, and σ and ωj are the module and
angle of the eigenvector’s entry wji:

caλ
t
a

⎡
⎢⎢⎢⎢⎢⎢⎣

w1

w2
...
...

w8

⎤
⎥⎥⎥⎥⎥⎥⎦

a

+ c̄aλ̄
t
a

⎡
⎢⎢⎢⎢⎢⎢⎣

w1

w2
...
...

w8

⎤
⎥⎥⎥⎥⎥⎥⎦

a

, (3a)

2
∣∣λtγ

∣∣

⎛
⎜⎜⎜⎝cos(θ t)

⎡
⎢⎢⎢⎣

|σ1| cos(ρ − ω1)

|σ2| cos(ρ − ω2)
...

|σ8| cos(ρ − ω8)

⎤
⎥⎥⎥⎦ − sin(θ t)

⎡
⎢⎢⎢⎣

|σ1| sin(ρ + ω1)

|σ2| sin(ρ + ω2)
...

|σ8| sin(ρ + ω8)

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ . (3b)

The demographic transient dynamics was assessed from the sub-dominant eigenvalues and eigen-
vectors and from the c coefficients. The sub-dominant eigenvalues are the biases from the central
tendency of the population growth rate and the sub-dominant eigenvectors are the biases from
the central tendency of the population structure. The central tendency is given by the dominant
eigenvalue and eigenvector. Thus, their knowledge is also fundamental for the analysis of the tran-
sient phase. The c coefficients enable the initial population vector (N0) to be written as a linear
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combination of the eigenvectors [3]. This can be seen if time t is set to 0 in Equation (2). Therefore,
the c coefficients also give the initial momentum of their eigenvectors (and associated biases).
These initial momentums were converted to the relative initial momentums. Their formulas were
γb/

∑
γi for the real sets and 2∗γb/

∑
γi for the complex conjugate sets. Their rate of persistence

through time was estimated as |λb|/λa, where λb is a sub-dominant eigenvalue, whereas λa is
the dominant eigenvalue. This is the inverse of the damping ratio proposed by Caswell [3]. The
persistence rate shows the rate at which the initial momentum persists, and thus the higher it
is, the longer the population is at its transient phase. The oscillatory properties of the transient
trajectories were fully defined by the eigenvalues (for the persistence rate), eigenvectors (for the
population structure) and c coefficients (for the initial momentum). In Appendix 1, a detailed
explanation of these metrics and how they interact to yield a determined transient trajectory of
the population growth rate and H:D is given.

2.3. Responsiveness analysis

We evaluated how responsive the oscillatory properties of the transient trajectory to dissimilarities
between ploidy phases were. This was done by estimating the following:

• Elasticity of the persistence rate.
• Elasticities of the phase ratios within the eigenvector (σi/σi+4). The amplitudes of the oscil-

lations of each stage were given by the respective entry in the eigenvector. Yet, it was more
feasible and interesting to test and present the ratio between the amplitudes of the ploidy
correspondent stages.

• Sensitivity of the relative initial momentum. In the absence of any kind of ploidy dissimilarities,
some γ diverged from zero only at very low decimal places and it was due to precision error.
These elasticities were automatically set aside as they required this value in the denominator.

The elasticities and sensitivities to the ploidy phase dissimilarities in the demographic matrix
(dF , dG and dL) and in each stage of the initial population vector (dS , d1, d2 and d3) were estimated
by changing these independent variables by 0.01 from an initial value of 1 (i.e. no dissimilarities).
The initial population vector was always N0 = [11111111].

3. Results

The demographic matrices were represented in the triangular plot using their relative elasticities of
λ to f , g and l as coordinates and giving a colour scale to the persistence rates of the sub-dominant
eigenvalue (Figure 1). It can be seen that both fertility and survival life strategies (respectively, in
the F and L lower corners of the triangle) had high persistence rates. Therefore, any population
with one of these strategies was subject to long transient phases. There were no demographic
matrices with growth life strategies. However, closer to the upper horizontal edge where the
growth relevance was higher, the transient phase was also long. This area was considered the
growth domain. Separating the F, G and L domains, there was a well-marked area of lower
persistence rates and thus short transient phases. In this area were the populations dominated by
demographies between fertility and looping. Each domain was associated with a different sub-
dominant set of eigenvalue, eigenvector and c coefficient (Figure 2). So, the three types of life
strategies had different transient phase characteristics with different responses to dissimilarities
among life-cycle phases.
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Figure 1. Overall persistence rate (colour scale) plotted upon the triangular ordination of the λ elasticities to fertility
(F), growth (G) and looping (L). The coordinate of a point in each axis is given by a line parallel to the lines that intercept
the axis coming from its right side.

Figure 2. Persistence rates (colour scale) of the specified sets plotted upon the triangular ordination of the λ elasticities
to F, G and L. The coordinate in each axis is given by a line parallel to the lines that intercept the axis coming from
its right side. (a) Real and equal set, (b) real and symmetric set, (c) complex conjugate and equal set and (d) complex
conjugate and symmetric set. The (a) with (n) a negative eigenvalue and (p) a positive eigenvalue.
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3.1. Sub-dominant sets of eigenvalues, eigenvectors and c coefficients

The dominant eigenvalue, eigenvector and c coefficient were always strictly real and positive. This
was expected from an irreducible primitive life cycle. Moreover, there were typically four types
of sub-dominant sets determining the duration, wave amplitude and wave length of the transient
population trajectory. One of the ways to characterize them was as either strictly real or complex
conjugated pairs. The other way was according to the eigenvector’s equality (ploidy balanced)
or symmetricity (ploidy unbalanced) of signs for the correspondent stage/size classes of both
ploidies (wi and wi+4 in Equations (2) and (3)). As to what type of sets did occur, which was the
sub-dominant one, how fast did these fade way and which were their oscillatory characteristics
depended on the type of life strategy and the magnitude of the ecological dissimilarity between
ploidy phases.As an example, a ploidy-balanced population structure could not be given by a linear
combination containing ploidy-unbalanced eigenvectors. On the other hand, a ploidy-unbalanced
population structure could hardly be given by a linear combination exclusively of eigenvectors
tending to be ploidy balanced. Therefore, with ploidy dissimilarities, the equal sets reduced their
relative initial momentums, while the symmetric sets increased them. The four possible types of
sets are as follows.

3.1.1. Real and equal

This was a set of a strictly real eigenvalue, eigenvector and c coefficient (e.g. Equations
(A1a–A1c) in Appendix 2). The eigenvector was equal for the correspondent stage/size classes
of both ploidy phases of the life cycle (ωi+4 = ωi) and thus cos(ωi) = cos(ωi+4). The eigenvalue
could be positive or negative, splitting the set into two sub-types.

3.1.1.1 With a negative eigenvalue. This was only important in the fertility domain
(Figure 2(a)). The eigenvector alternated between positive and negative signs for the consec-
utive stages within each ploidy (Equation (A1) in Appendix 2) with the same periodicity of 2
of its eigenvalue. So, each stage also alternated between benefit and detriment with the same
period. This set simulated pulses of individuals from spores to bigger ramets (Figure 3(a–c))
caused by the most immediate production of offspring. This is the shortest, fastest path of grow-
ing to the first size class and immediately to reproduce, resulting in a loop with four transitions
taking four time steps (4t) to revolve. However, as each ploidy started with its own offspring,
there were two simultaneous symmetric pulses resulting in an oscillation with half the period.
These pulses were more prevailing the higher the relative fecundities of the smaller size classes
were (Figure 3(d)). Ploidy dissimilarities brought a bias between complementary entries in the
eigenvector (σi �= σi+4), giving a ploidy an oscillation with a wider amplitude (Figure 3(a–c)).
However, its linear combination with the dominant set resulted in ploidy abundances always
keeping the same proportionality (Figure 3(e)) and so the H:D did not vary.

3.1.1.2 With a positive eigenvalue. This was of only moderate importance in the looping
domain (Figure 2(a)) and did not produce any periodic alternation in the bias (θ = 0). It simply
faded away monotonically with time. Ecological dissimilarities produced a bias always benefiting
the abundance of the same ploidy. This was always the same as that favoured by the dominant set
and it was always favoured in the same amount.

3.1.2. Real and symmetric

This was only relevant in the looping domain, where it had a very high persistence rate
(Figure 2(b)). This was a set with a strictly real eigenvalue, eigenvector and c coefficient
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Figure 3. Real equal set with a negative eigenvalue. In (a–c), the black solid line represents haploids and the blue dotted
line represents diploids. The bias in each size class was standardized to the bias in the spores. In (e), the black lines
represent haploids, the blue lines represent diploids, the solid lines represent the central tendency given by the dominant
set and the dotted lines represent the linear combination of the dominant set and the real and equal set.

Figure 4. Trajectory of the linear combination of the real symmetric sets. Simulation in the looping domain
with i = −3.8, g = 0.05 and l = 0.96. Dissimilar L with dL = 0.9. λb/λa = 0.88, λc/λa = 0.76, λd/λa = 0.67.
γa/

∑
γi = 0.095, γb/

∑
γi = 0.093, γc/

∑
γi = 0.172, γd/

∑
γi = 0.253.
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(e.g. Equation (A2) in Appendix 2). The eigenvalue was always positive (θ = 0) and the
eigenvector had symmetrical signs for the correspondent stage/size classes of both ploidies
(ωi+4 = π + ωi => cos(ωi+4) = cos(π + ωi) = − cos(ωi)). This produced a bias from the cen-
tral tendency that permanently favoured a ploidy in detriment of the other. Under ecological
similarity, σi = σi+4. However, the c coefficient was null (γ = 0) and so this set was obsolete
(it was switched off). With phase dissimilarities either on the demographic matrix or in the ini-
tial population vector, both σi �= σi+4 and the c coefficient became non-null (γ �= 0), bringing a
momentum (switching on) to the set responsible for a monotonical transition to stability (Figure 4).
Often, more of these sets occurred with lesser relevance but still enough to eventually make the
transition non-monotonical (as was the case of size class 3 in Figure 4). The linear combination
of the real symmetric sets simulated the ploidy uneven component of the slow diffusive flow of
individuals through the population structure.

3.1.3. Complex conjugate and equal

This was very important in the growth domain where it showed a high persistence rate and
less important in the looping domain (Figure 2(c)). It was a set of a complex conjugate pair of
eigenvalues, eigenvectors and c coefficients (e.g. Equation (A3) in Appendix 2). The eigenvectors
were similar for the correspondent stage/size classes of both ploidies. When the pairs were added,
they yielded a strictly real set in the form of Equation (3b) preserving the equality of signs between
correspondent stage/size classes (ωi+4 = ωi => cos(ωi+4) = cos(ωi)). It produced a bias that
alternated in favouring some size classes in detriment to the others, thus simulating pulses of
individuals from spores to the bigger ramets. These pulses were caused by the bulk production
of offspring, that is, growing to the larger, more fecund ramets and, once there, to reproduce.
However, reproduction was not restricted to the biggest ramet size class and thus the average
breeder was slightly below 3 ramet size units and the average number of transitions in the bulk
loop was slightly below 8, taking slightly below eight time steps (8t) for the loop to revolve. There
were two symmetric loops, each starting in its ploidy, generating individuals in two simultaneous
pulses, resulting in an oscillation with half the period (Figure 5). This periodicity was simulated by
an eigenvalue with an angle θ in the complex plane of approximately ±π/2 (Figure 6). The more
concentrated the fecundities were in one size class, the higher the persistence rate of the pulses
(|λi|/λa), as individuals diffused less through other paths. The more the initial population was
concentrated in one size class, the bigger the relative initial momentum of the pulses (2γb/

∑
γi).

σi and σi+4 were always approximate despite the amount of dissimilarities between ploidy phases
(Figure 6). Hence, the amplitudes of the pulses were always very close between the haploid
and diploid population structures (Figure 5). Thus, this set was only competent for simulating
the ploidy analogous component of the pulses. The eigenvalues, eigenvectors and c coefficients
responded to ploidy dissimilarities changing the absolute value of their entries (λ, σ and γ ),
while their angle in the complex plane (θ , ωi and ρ) exhibited insignificant differences (Figure 6,
but not shown for the c coefficients). Thus, ploidy dissimilarities change the initial momentum,
prevalence rate and amplitude of the pulses but not their period.

3.1.4. Complex conjugate and symmetric

This was particularly important in both the fertility and growth domains. It was also relevant in
the transition from the growth to the looping domain (Figure 2(d)). This was a set of a complex
conjugated pair of eigenvalues, eigenvectors and c coefficients (e.g. Equation (A4) inAppendix 2).
The eigenvectors were symmetric for the correspondent stages of both ploidies. Adding the pairs
yielded a strictly real set in the form of Equation 3(b) that preserved the symmetricity of signs
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Figure 5. Bias to the central tendency given by the complex conjugate equal pair of eigenvectors, eigenvalues and c
coefficients. Simulation in the growth domain with i = −3, g = 0.8 and l = 0. This was the demographic matrix with the
highest elasticity to G. Dissimilar G with dG = 0.8. Persistence rate = 0.84.

Figure 6. Polar plots of the complex conjugate equal pair of eigenvectors and eigenvalues. In the eigenvalue are plotted
λb and θb, whereas in size class ‘i’ are plotted σi and ωi in red and σi+4 and ωi+4 in blue. Simulation in the growth domain
with i = −3, g = 0.8 and l = 0. Dissimilarities tested for dG from 1 to 0.6 at intervals of 0.02.

between correspondent stages of both ploidies (ωi+4 = π + ωi => cos(ωi+4) = cos(π + ωi) =
− cos(ωi)). It produced a bias from the central tendency that alternated in favouring some size
classes in detriment to the others, thus simulating pulse flows. However, as the signs of the
added eigenvectors’ entries were complementary, the peaks of one ploidy were the sinks of the
other (Figure 7). When simulated in the growth domain, the eigenvalues had an angle θ in the
complex plane that was half the angle of the complex conjugate equal eigenvalues, thus causing
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Figure 7. Bias to the central tendency given by the complex conjugate symmetric pair of eigenvectors, eigenvalues and
c coefficients. Simulation in the growth domain with i = −3, g = 0.8 and l = 0.01. This was the accepted demographic
matrix with the higher elasticity to G. Dissimilar G with dG = 0.8. Persistence rate = 0.95.

an oscillation with double the period. In this case, the symmetric set was simulating the ploidy
unbalance in the pulse flow of individuals through the bulk loop in the life cycle, which is similar to
the flow of a single unparalleled pulse. When simulated in the fertility domain, these eigenvalues
had an angle θ in the complex plane that was half the angle of the real, equal and negative
eigenvalue. In this case, the symmetric set was simulating the ploidy unbalance in the pulse flow
of individuals through the shortest loop in the life cycle. So, whatever the life strategy, the ploidy
unbalance in the pulse flow was always represented by this symmetric set. Dissimilarities in the
vital rates had little effect in the period of the oscillation (the angle of the eigenvalues in the
complex plane) but significantly affected its amplitude (σ ), initial momentum (γ ) and prevalence
rate (λ). In particular, in the absence of ploidy dissimilarities in both the demographic matrix and
the initial population vector, this set was switched off by a null c coefficient. There were usually
two of these sets for a given demographic matrix: one related to the shortest loop in the life cycle
and the other related to the bulk loop. As to which started stronger and prevailed further depended
on the fertility vs. growth life strategy.

3.2. Systematization of the transient trajectory

The transient trajectory was resumed by the distinct sets representing different flows of individuals
(or units) through the population structure. These were either slow diffusive flows or fast pulse
flows, through the shortest or the bulk loop of the life cycle, and ploidy balanced or unbalanced.
Therefore, the transient trajectory could also be classified by identifying which were the prevailing
sets in each life strategy.

3.2.1. Populations in life strategies in the fertility domain

These populations had their transient dynamics dominated by the flow of offspring through the
shortest loop in the life cycle. Hence, their short-lasting transient trajectories were characterized
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Figure 8. H:D transient trajectories with the life strategy in (a) fertility domain with i = −2, g = 0.08, l = 0.05,
dF = 0.5, dG = 1, dL = 1; (b) growth domain with i = −3, g = 0.8, l = 0.01, dF = 1, dG = 0.8, dL = 1; (c) looping
domain with i = −3.8, g = 0.8, l = 0.96, dF = 1, dG = 1, dL = 0.95, dspore = 4, d1 = 4, d2 = 4 and d3 = 4; (d) between
the fertility and the growth domain with i = −2.5, g = 0.5, l = 0, dF = 0.5, dG = 0.5, dL = 1; (e) between the fertility
and the looping domain with i = −2.5, g = 0.05, l = 0.5, dF = 2, dG = 1, dL = 0.7; and (f) between the growth and the
looping domain with i = −3, g = 0.3, l = 0.5, dF = 1, dG = 1.5, dL = 0.7.

by ploidy simultaneous pulses of individuals coming at a short period (2t). The ploidy-balanced
component of the pulses was given by the real and equal set. Ploidy dissimilarities either in the
life cycle or in the initial population structure gave different amplitudes to the two parallel pulses,
resulting in an H:D oscillation with double the period (4t; see Figure 8(a)). This component of the
oscillation was given by the complex conjugated symmetric set. The persistence of these pulses
was increased by ploidy dissimilarities in fertility rates, but it was reduced by ploidy dissimilarities
in growth or looping rates as these enhanced the flow of individuals through other paths. As a
matter of fact, the pulse flow of individuals through the longer loop was also present and had a
higher prevalence rate. However, it always came with a very low initial momentum, making it
meaningless.

3.2.2. In life strategies in the growth domain

These populations had their transient dynamics dominated by the flow of offspring through the
bulk loop in the life cycle. Hence, their long-lasting transient trajectories were characterized
by ploidy simultaneous pulses of individuals coming at a big period (4t). The ploidy-balanced
component of the pulses was given by the complex conjugate and equal set. Ploidy dissimilarities
either in the life cycle or in the initial population structure gave different amplitudes to the two
parallel pulses, resulting in an H:D oscillation with double the period (8t; see Figure 8(b)). This
component of the oscillation was given by the complex conjugated symmetric set. The initial
momentum of the ploidy-unbalanced component of the pulses, the rate at which it prevailed and
the amplitude of the H:D oscillations increased with ploidy dissimilarities in fertility or ramet
growth rates. Although the transient phase was dominated by the pulse flow through the bulk
loop, the first pulse of individuals was through the shortest loop in the life cycle and hence the
odd initial oscillation shown in Figure 8(b).
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3.2.3. In life strategies in the looping domain

These populations had their transient trajectories dominated by the slow monotonical transition
from the initial structure to the stable structure (Figure 8(c)), which originated from the slow
diffusion of individuals through the life cycle. This was simulated by the linear combination
of the real symmetric sets, the real equal set with a positive eigenvalue and the dominant set.
This transient trajectory was extremely responsive to dissimilarities in looping rates and little
responsive to anything else. From Figure 8(c), the difference between the dissimilarities imposed
in the looping rates and those imposed upon the initial population structure can be observed. A
shift in phase dominance (as in Figure 8(c)) could only be attained if the ploidy dominating the
initial population structure was opposite to the one dominating the stable population structure.
A particular situation occurred when l was decreased slightly and g was increased slightly (e.g.
l = 0.87 and g = 0.1). In these cases, the survival rate was still in the vicinity of 1, and the
population was still dominated by looping ,but the real sets gave way to the complex conjugated
sets. However, these had θ very close to 0 and thus were replacing the real symmetric sets copying
their dynamics and role.

3.2.4. In life strategies in the transition from the fertility to the growth domain

In these populations, the pulse flow of individuals through the shorter loop in the life cycle
prevailed in the first few instances. However, it soon merged with and gave way to the pulse flow
through the main loop. This could be observed from the H:D cycle where an initial period of
approximately 4t was gradually overwhelmed by a longer period that asymptotically tended to
approximately 8t (Figure 8(d)). However, the amplitude of the oscillations decayed fast and the
progression of this shift became veiled.

3.2.5. In life strategies in the transition from the fertility to the looping domain

These populations had the pulse flow of individuals through the shortest loop in the life cycle
merged with the slow diffusive flow of individuals throughout the life cycle until its settlement at
the stable population structure. It resulted in a short-lasting transient phase with the population
attaining its stable structure soon after restart. Therefore, the H:D oscillation with a 4t period also
quickly damped away to the H:D at steady state (Figure 8(e)).

3.2.6. In life strategies in the transition from the growth to the looping domain

These populations had the pulse flow of individuals through the bulk loop in the life cycle merged
with the slow diffusive flow of individuals throughout the life cycle until its settlement at the stable
population structure. It resulted in a short-lasting transient phase with the population attaining
its stable structure soon after restart. Therefore, the H:D oscillation with a 8t period also quickly
damped away to the H:D at steady state (Figure 8(f)).

4. Discussion

Biphasic life cycles are expected to show an H:D variability in their transient trajectories in
the presence of ploidy dissimilarities in the vital rates and/or initial population structure. These
are specific to the type of life strategy adopted by the species as they are originated by spe-
cific demographic processes. They are also simulated by specific eigenvectors, eigenvalues and
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c coefficients extracted from the demographic matrix and initial population structure. This H:D
variation is exclusively due to the own structure of the life cycle and not related to environmental
seasonality, only requiring ploidy dissimilarities in the vital rates and/or in the initial popula-
tion structure. Even in a generally stable environment, any sporadic instability in the population
structure flows through the life cycle, in fast pulses and/or slowly diffusing, generating H:D time
variability. Thus, a cyclic time variation of the H:D in a particular population, as observed by
Thornber and Gaines [28], cannot be automatically taken as evidence of seasonality. Likewise, a
change in the H:D over a period of 12 years [25] should not be immediately taken as evidence
that the population is evolving to a new situation.

Dissimilarities between ploidy phases were found over the fecundity rates by Santos and Duarte
[20], Scrosati et al. [24], Thornber and Gaines [29] and Thornber et al. [30]. These could be
seasonal, herbivory dependent and could possibly be due to their different cytological processes
of gamete/spore production. Dissimilarities between ploidy phases were also found for spore
performance by Destombe et al. [4], Garza-Sanchez et al. [9], Gonzalez and Meneses [10],
Pacheco-Ruíz et al. [16], Roleda et al. [19] and Scrosati et al. [24] and for ramet growth and survival
rates by Destombe et al. [4], Gonzalez and Meneses [10], Pacheco-Ruíz et al. [16], Thornber et al.
[30] and Vergés et al. [32], which are possibly due to conditional differentiation. A perturbation in
the population structure may occur following environmentally extreme events, extreme grazing
or competition events, provided that they affect ploidy phases differently. One particular situation
is when the demographic matrix changes, as it implies that the population structure at the time
of change is the initial population structure of a new run. There are several ways this situation
is likely to occur: it may be a change in the vital rates inside the survival or the fertility sub-
block of the demographic matrix, due to seasonality, or it may be reproductive asynchrony of the
spore/gamete donor population, which has been already reported for Gelidium sesquipedale [20].

Ploidy dissimilarities in fertility or growth rates are able to create cyclic niche partitions damping
away with time. As long as sporadic extreme events occur, even at low frequencies, these ploidy
dissimilarities generate over time the niche partition [12] demonstrated necessary for the evolution
and stability of biphasic life cycles. On the other hand, ploidy dissimilarities in a particular looping
rate alone are not able to do this and need a counter-weight. To support this, in the simulations of
looping-dominated life strategies with ploidy dissimilarities imposed over looping rates, a shift in
ploidy dominance only occurred when the initial H:D was opposite to the asymptotic H:D. While
the latter H:D was imposed by ploidy dissimilarities in looping rates, the former H:D could only
be imposed by something else.

Cyclic oscillations promoting the niche partition necessary for the evolution and stability of
biphasic life cycles are only possible in the absence of a seasonality affecting the vital rates. This
is because the oscillations are induced by the life-cycle structure, resulting in an H:D evolution
miss fitted to the environmental cycle. Suppose the environment changes to a situation where a
ploidy is fitter than the other because it reproduces or grows better. If the environmental cycle has
a periodicity wider than the one imposed by the life-cycle structure, there is only an increase in
the average population fitness for a restricted amount of time. After that, the life-cycle structure
and not the environment forces the population to shift to the lesser fit ploidy. The population
may only come around this problem if the period of the oscillation induced by the life cycle is
wider than the seasonality. In such a case, while the seasonal conditions are better for a particular
ploidy, the dominance imposed by the life-cycle structure shall always fit. When environmental
change occurs, the population starts a new oscillation with the dominance of the better fit ploidy.
Awareness about this is fundamental for future theoretical research on the evolution and stability
of biphasic life cycles. The outcome of the modelling essays may be strongly dependent on the
duration of the life-cycle loops relative to seasonality. This problem should not occur with ploidy
dissimilar survival rates. In such a case, the H:D evolution is always directly proportional to the
ploidy fitness ratio.
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Many species were documented to seasonally shift their H:D and their ploidy dissimilarities
or were simply reported to have a time-variable dynamics. Such were the cases of Gracilaria
verrucosa [4], Chondrus crispus [24], Chondracanthus chamissoi [10], Gelidium sesquipedale
[20], Mazzaella cornucopiae [22], Sarcothalia crispata [15], Pterocladiella capillacea [27], Maz-
zaella splendens [5], Gelidium pusillum [17], Gracilaria gracilis [13] and Grateloupia turuturu
[1], showing that the H:D time variability is worldwide. The H:D of Mazzaella flaccida observed
at Piedras Blancas and Vandenberg (Pacific Coast of North America) with a fine temporal reso-
lution [28] exhibited oscillations mismatching the seasonal cycle. At Piedras Blancas, they were
slightly shorter, whereas at Vandenberg they were much longer. In the light of the current work,
this suggests that ploidy dissimilarities do exist in fertility and/or growth rates. Assuming that
these oscillations were imposed by the life-cycle structure and not by seasonality, the overwhelm-
ing difference in their periods at both sites must be driven by site-specific sizes of their life-cycle
loops. Then, the ramets in Vandenberg should survive more, attain bigger sizes or get sexually
mature later relative to those in Piedras Blancas. Thornber and Gaines [29] showed that a higher
diploid fecundity was driving the average haploid dominance in Mazzaella flaccida, while their
H:D spatial variability could only be explained by differences in mortality rates. Accordingly,
Vieira and Santos [34] suggested that only through ploidy dissimilarities in survival may condi-
tional differentiation drive an effective spatial niche partition. This is required for the evolution
and stability of biphasic life cycles [12]. In such a case, the ploidy dissimilar fecundities should
simply be an unavoidable consequence of the differences between meiosis and syngamy with side
effects in the H:D averaged over space and in intermittent site-specific H:D transient trajectories.
The latter must not be too frequent or the population will often severely depart the structure
optimizing niche exploitation.
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Appendix 1. Descriptors of the transient dynamics

The linear combination (linear in the parameters) of the eigenvalues, eigenvectors and c coefficients extracted from the
demographic matrix estimates the population vector at any given time t. Hence, these metrics define the properties of the
transient trajectory, namely its initial momentum, duration and wave period and amplitude. Most of this is approached in
the literature about matrix population dynamics, as are the cases of Caswell [3] and Tuljapurkar and Caswell [31]. A brief
overview is given in order to better understand the complex dynamics that govern the transient phase and its relationship
with the demography of algae with biphasic life cycles.
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Figure A1. (a) λ trajectory; (b) H:D trajectory; λa = 1.042; λb,c = 0.218 ± 0.869i; abs(λb,c) = 0.9;
θb,c = ±1.325 rad = ±75.9◦; wave period = 4.74; persistence rate = 0.86.

A1.1. Central tendency

The long-term population dynamics are given by the dominant set; that is, the long-term growth rate tends asymptotically
to the dominant eigenvalue and the long-term population structure is given by the eigenvector associated with it. Thus,
any statistic from the long-term population structure, as is the H:D, can be estimated upon this eigenvector (Vieira and
Santos 2010). As this dominant eigenvalue is strictly real and positive, growth or decline is monotonical and the population
structure is stable. During the transient phase, the dominant eigenvalue is the central value around which oscillates the
growth rate at a given time t, but it is not its actual rate. Likewise, the associated eigenvector gives the central tendency of
the population structure, but it is not its actual structure. Thus, any statistic estimated upon this eigenvector is the central
tendency upon which the actual values of the statistic oscillate (Figure A1).

A1.2. Persistence rate

For each of the sets of eigenvalue, eigenvector and c coefficient, exponential growth or decline depends only on each
eigenvalue being bigger or smaller than 1 in absolute value. Relative to the higher eigenvalues, all the smaller eigenvalues
tend to turn negligible and thus their influence on the population dynamics fades away (Figure A1). The rate at which
the transient phase fades away is commonly measured by the ‘damping ratio’ between the magnitudes of the biggest
(dominant) and the second biggest (sub-dominant) eigenvalues (|λa|/|λb|). The closer it is to 1 the more the transient
phase prevails, but it may raise to +∞. In this work, the statistic was inverted to |λi|/|λa| and named persistence rate.
With this inversion, all eigenvalues are scaled to the dominant and their persistence rates are within the 0–1 range. Higher
non-dominant eigenvalues, closer to the dominant, have a persistence rate closer to 1 and will take longer to fade away.
Moderate non-dominant eigenvalues have a moderate persistence rate and will fade away quicker. Small non-dominant
eigenvalues have a persistence rate closer to 0 and will be almost imperceptible. It also enables to estimate the dissipation
rate as 1−‘persistence rate’. The persistence rate and the dissipation rate are direct measures of the rate at which it prevails
or dissipates the initial momentum (given by the ci coefficients) of each eigenvector. Therefore, it was fundamental to
adopt the persistence rate instead of the damping ratio.

A1.3. Oscillation period

Eigenvalues vary independently as they are raised to time t. Real positive eigenvalues show monotonical exponential
growth or decline whether they are bigger or smaller than 1. Real negative eigenvalues oscillate between positive and
negative values with a period of 2 (Figure A2). Complex eigenvalues cycle through the complex plane with a period of
2π/θ (Figure A3 (left)). However, complex sets of eigenvalue, eigenvector and c coefficient always come in complex
conjugate pairs which, when combined, cancel out their imaginary components. Thus, the sum of the complex conjugate
eigenvalues oscillates between strictly real positive and negative values with the same period of 2π/θ (Figure A3 (right)).
The oscillation period (or wave length) of the transient trajectory is given by the sub-dominant eigenvalue. Nevertheless,
if other eigenvalues have approximate magnitudes, different cycles are over-imposed, leading to an oscillation pattern that
resembles a chaotic one.
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Figure A2. Oscillatory trajectory of a strictly real negative eigenvalue; λb = −0.68; θb = 180◦; wave period = 2.

Figure A3. Oscillatory trajectory of (left) a complex eigenvalue; λb = 0.598 + 0.679i; abs(λb) = 0.905; θ = 48.6◦;
wave period = 7.41 and (right) the complex conjugated pair of eigenvalues λb and λc.

A1.4. Population structure

At any time t, the central tendency of the population structure is given by the eigenvector (wa) associated with the dominant
eigenvalue (λa), which includes only real, non-negative values. The other eigenvectors (wi for i �= a) give the residuals
that add up to the central tendency yielding the actual population structure. The sum of the residuals is the wave amplitude.
The relative weights of the central tendency and residuals for a given time t are given by ci|λi|t . These weights represent
the actual momentum of wi at time t.

The bulk of the oscillatory pattern is given by the sub-dominant set of eigenvector, eigenvalue and c coefficient (or
complex conjugated pair of eigenvectors, eigenvalues and c coefficients), whereas the smaller ones may yield smaller,
usually undetectable oscillations around the main oscillating trajectory (Figure A1). Nonetheless, several of the biggest
non-dominant sets may have approximate absolute values for their eigenvalues, eigenvectors and c coefficients, leading to
over-imposed oscillations of close magnitude but different periods (Figure A4). The resulting transient trajectory is odd.
However, such statistics like the H:D, by averaging over stage classes, tend to smooth it.
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Figure A4. Eigvala = 1.02, λa = 1.02 and θa = 0. Eigvalb,c = −0.07 ± 0.83i, λb,c = 0.83, persistence ratebc = 0.81,
θb,c = ±95.1◦ and wave period(b,c) = 3.79; eigvald = −0.85, λd = 0.85, persistence ratebc = 0.83, θd = 180◦ and wave
period(d) = 2.

Figure A5. H:D when the c coefficients for the complex conjugated pair were multiplied (a) by 0, (b) by 1 and (c) by 2.

A1.5. Initial conditions and momentum

The c coefficients define how much of the initial population structure is explained by each eigenvector. So, by weighting
the eigenvalues and eigenvectors, they also weight their influence in the transient phase because the population’s trajectory
carries a memory of the initial conditions, which fades away as time goes by (Figures A1, A4 and A5). This memory
is the momentums that the eigenvectors bear at any particular time. The initial momentum of each eigenvector is given
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by its c coefficient. The rate at which it grows or decays is given by the correspondent eigenvalue. In relative terms,
each relative initial momentum is given by γb/

∑
γi for the real sets or 2γb/

∑
γi for the complex conjugate sets (see

Equation(3)). The rate at which the momentum prevails is given by the persistence rate (|λb|/λa). Hence, at any time
t, the prevailing relative momentum is given by γb/

∑
γ ∗

i (|λb|/λa)
t for the real sets and 2∗γb/

∑
γ ∗

i (|λb|/λa)
t for the

complex conjugate sets. In particular situations, there may be a c coefficient close to zero that cancels out its associated
eigenvector. If the correspondent eigenvalue is the sub-dominant, it will transfigure the population’s trajectory, altering
the otherwise expected duration, period and amplitude of the transient phase.

Appendix 2. Common sets of eigenvectors, eigenvalues and c coefficients

Here, examples of the four types of sets of eigenvalues, eigenvectors and c coefficients commonly found for the (8,8)-
dimensional demographic matrix of the stage/size-structured model of a biphasic life cycle are given.

A2.1. Real and equal

cλt

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1

w2

...

...
w8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −1.3224 × (−0.4918t) ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.7067
−0.00060

0.0004
−0.0002
0.7065

−0.0006
0.0003

−0.0002

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A1a)

= 2Re(c)|λ|t cos(θ t)

⎡
⎢⎢⎢⎢⎣

Re(w1)

Re(w2)

...
Re(w8)

⎤
⎥⎥⎥⎥⎦

(A1b)

= 2|γ | cos(ρ)|λt | cos(θ t)

⎡
⎢⎢⎢⎢⎣

|σ1| cos(ω1)

|σ2| cos(ω2)

...
|σ8| cos(ω8)

⎤
⎥⎥⎥⎥⎦

. (A1c)

A2.2. Real and symmetric

cλt

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1

w2

...

...
w8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −0.0915 × 1.4594t ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.7511
0.0015
0.0004
0.0001
0.6602

−0.0017
−0.0004
−0.0001

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A2a)

= 2|γ | cos(ρ)|λt | cos(θ t)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

|σ1|. cos(ω1)

...
|σ5|. cos(π + ω1)

...
|σ8|. cos(π + ω4)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A2b)
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A2.3. Complex conjugate and equal

(−0.005 − 0.336i)(−0.029 + 0.256i)t ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.650 + 0.116i
−0.001 − 0.002i
−0.002 + 0.002i
0.002 + 0.001i
0.751 + 0.000i

−0.001 − 0.002i
−0.002 + 0.002i
0.003 + 0.001i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ (−0.005 + 0.336i)(−0.029 − 0.256i)t ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.650 − 0.116i
−0.001 + 0.002i
−0.002 − 0.002i
0.002 − 0.001i
0.751 − 0.000i

−0.001 + 0.002i
−0.002 − 0.002i
0.003 − 0.001i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A3)

A2.4. Complex conjugate and symmetric

(−0.004 − 0.005i)(0.227 + 0.691i)t ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.707 + 0.007i
−0.002 − 0.010i
0.004 − 0.002i
0.001 + 0.002i
0.707 − 0.007i
0.002 + 0.010i

−0.004 + 0.002i
−0.001 − 0.002i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ (−0.004 + 0.005i)(0.227 − 0.691i)t ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.707 − 0.007i
−0.002 + 0.010i
0.004 + 0.002i
0.001 − 0.002i
0.707 + 0.007i
0.002 − 0.010i

−0.004 − 0.002i
−0.001 + 0.002i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A4)


