69 research outputs found

    IL-1R and inflammasomes mediate early pulmonary protective mechanisms in respiratory brucella abortus infection

    Get PDF
    Brucella spp. infection is frequently acquired through contaminated aerosols. The role of interleukin-1 beta (IL-1β) in the early pulmonary response to respiratory Brucella infection is unknown. As shown here, IL-1β levels in lung homogenates and bronchoalveolar lavage fluid (BALF) of mice intratracheally inoculated with B. abortus were increased at 3 and 7 days p.i. At 7 days p.i., pulmonary CFU numbers were higher in IL-1 receptor (IL-1R) knockout (KO) mice than in wild type (WT) mice. At different times p.i. CFU in lungs and BALF were higher in mice lacking some inflammasome components (caspase-1, AIM2, NLRP3) than in WT mice. At 2 days p.i. pulmonary levels of IL-1b and CXCL1 (neutrophils chemoattractant) were lower in caspase-1/11 KO mice. At day 3 p.i., neutrophils counts in BALF were lower in caspase-1/11 KO mice than in WT mice. During in vitro infections, IL-1β secretion was lower in alveolar macrophages from caspase-1/11, NLRP3 or AIM2 KO mice than in WT controls. Similarly, IL-1β production by B. abortus-infected alveolar epithelial cells was reduced by pretreatment with a specific caspase-1 inhibitor. This study shows that IL-1R, probably through IL-1β action, and the NLRP3 and AIM2 inflammasomes are involved in pulmonary innate immune protective mechanisms against respiratory B. abortus infection.Fil: Hielpos, María Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Fernandez, Andrea Giselle. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; ArgentinaFil: Falivene, Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; ArgentinaFil: Alonso Paiva, Iván Mathias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; ArgentinaFil: Muñoz González, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; ArgentinaFil: Ferrero, Mariana Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; ArgentinaFil: Campos, Priscila C.. Universidade Federal de Minas Gerais; BrasilFil: Vieira, Angelica T.. Universidade Federal de Minas Gerais; BrasilFil: Oliveira, Sergio Costa. Universidade Federal de Minas Gerais; BrasilFil: Baldi, Pablo Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; Argentin

    Application of modified membranes in drinking water treatment

    Get PDF
    This paper presents filtration results obtained with commercial acetate membrane with a pore diameter of 0.45 μm, unmodified and modified with TiO2, bearing in mind drinking water treatment. The experimental filtration set-up that was used consisted in the gravitational filtration system, whereas the accomplished tests that were endured consisted of hydraulic permeability of the modified and unmodified membranes, treatment of polluted water with E. coli bacterium, color removal, turbidity and free chlorine. The results of hydraulic permeability showed similar flux for all membranes at the end of the experiments, between 25 and 30 kg·m-2· h-1. The retention results for color, turbidity and E.coli bacteria are comparable.Fundo Europeu de Desenvolvimento Regional (FEDER)Fundação para a Ciência e a Tecnologi

    Beyond trees: Mapping total aboveground biomass density in the Brazilian savanna using high-density UAV-lidar data

    Get PDF
    Tropical savanna ecosystems play a major role in the seasonality of the global carbon cycle. However, their ability to store and sequester carbon is uncertain due to combined and intermingling effects of anthropogenic activities and climate change, which impact wildfire regimes and vegetation dynamics. Accurate measurements of tropical savanna vegetation aboveground biomass (AGB) over broad spatial scales are crucial to achieve effective carbon emission mitigation strategies. UAV-lidar is a new remote sensing technology that can enable rapid 3-D mapping of structure and related AGB in tropical savanna ecosystems. This study aimed to assess the capability of high-density UAV-lidar to estimate and map total (tree, shrubs, and surface layers) aboveground biomass density (AGBt) in the Brazilian Savanna (Cerrado). Five ordinary least square regression models esti-mating AGBt were adjusted using 50 field sample plots (30 m Ă— 30 m). The best model was selected under Akaike Information Criterion, adjusted coefficient of determination (adj.R2), absolute and relative root mean square error (RMSE), and used to map AGBt from UAV-lidar data collected over 1,854 ha spanning the three major vegetation formations (forest, savanna, and grassland) in Cerrado. The model using vegetation height and cover was the most effective, with an overall model adj-R2 of 0.79 and a leave-one-out cross-validated RMSE of 19.11 Mg/ha (33.40%). The uncertainty and errors of our estimations were assessed for each vegetation formation separately, resulting in RMSEs of 27.08 Mg/ha (25.99%) for forests, 17.76 Mg/ha (43.96%) for savannas, and 7.72 Mg/ha (44.92%) for grasslands. These results prove the feasibility and potential of the UAV-lidar technology in Cerrado but also emphasize the need for further developing the estimation of biomass in grasslands, of high importance in the characterization of the global carbon balance and for supporting integrated fire management activities in tropical savanna ecosystems. Our results serve as a benchmark for future studies aiming to generate accurate biomass maps and provide baseline data for efficient management of fire and predicted climate change impacts on tropical savanna ecosystems

    IL-1R and Inflammasomes Mediate Early Pulmonary Protective Mechanisms in Respiratory Brucella Abortus Infection

    Get PDF
    Brucella spp. infection is frequently acquired through contaminated aerosols. The role of interleukin-1 beta (IL-1β) in the early pulmonary response to respiratory Brucella infection is unknown. As shown here, IL-1β levels in lung homogenates and bronchoalveolar lavage fluid (BALF) of mice intratracheally inoculated with B. abortus were increased at 3 and 7 days p.i. At 7 days p.i., pulmonary CFU numbers were higher in IL-1 receptor (IL-1R) knockout (KO) mice than in wild type (WT) mice. At different times p.i. CFU in lungs and BALF were higher in mice lacking some inflammasome components (caspase-1, AIM2, NLRP3) than in WT mice. At 2 days p.i. pulmonary levels of IL-1β and CXCL1 (neutrophils chemoattractant) were lower in caspase-1/11 KO mice. At day 3 p.i., neutrophils counts in BALF were lower in caspase-1/11 KO mice than in WT mice. During in vitro infections, IL-1β secretion was lower in alveolar macrophages from caspase-1/11, NLRP3 or AIM2 KO mice than in WT controls. Similarly, IL-1β production by B. abortus-infected alveolar epithelial cells was reduced by pretreatment with a specific caspase-1 inhibitor. This study shows that IL-1R, probably through IL-1β action, and the NLRP3 and AIM2 inflammasomes are involved in pulmonary innate immune protective mechanisms against respiratory B. abortus infection

    Author Correction: Native diversity buffers against severity of non-native tree invasions.

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Native diversity buffers against severity of non-native tree invasions

    Get PDF
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2^{1,2}. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4^{3,4}. Here, leveraging global tree databases5,6,7^{5,6,7}, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions

    Native diversity buffers against severity of non-native tree invasions.

    Get PDF
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions

    The global biogeography of tree leaf form and habit

    Get PDF
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling
    • …
    corecore