19 research outputs found

    Hop Mice Display Synchronous Hindlimb Locomotion and a Ventrally Fused Lumbar Spinal Cord Caused by a Point Mutation in Ttc26

    Get PDF
    Identifying the spinal circuits controlling locomotion is critical for unravelling the mechanisms controlling the production of gaits. Development of the circuits governing left-right coordination relies on axon guidance molecules such as ephrins and netrins. To date, no other class of proteins have been shown to play a role during this process. Here, we have analyzed hop mice, which walk with a characteristic hopping gait using their hindlimbs in synchrony. Fictive locomotion experiments suggest that a local defect in the ventral spinal cord contributes to the aberrant locomotor phenotype. Hop mutant spinal cords had severe morphologic defects, including the absence of the ventral midline and a poorly defined border between white and gray matter. The hop mice represent the first model where, exclusively found in the lumbar domain, the left and right components of the central pattern generators (CPGs) are fused with a synchronous hindlimb gait as a functional consequence. These defects were associated with abnormal developmental processes, including a misplaced notochord and reduced induction of ventral progenitor domains. Whereas the underlying mutation in hop mice has been suggested to lie within the Ttc26 gene, other genes in close vicinity have been associated with gait defects. Mouse embryos carrying a CRISPR replicated point mutation within Ttc26 displayed an identical morphologic phenotype. Thus, our data suggest that the assembly of the lumbar CPG network is dependent on fully functional TTC26 protein

    A loss-of-function mutation in RORB disrupts saltatorial locomotion in rabbits

    Get PDF
    Saltatorial locomotion is a type of hopping gait that in mammals can be found in rabbits, hares, kangaroos, and some species of rodents. The molecular mechanisms that control and fine-tune the formation of this type of gait are unknown. Here, we take advantage of one strain of domesticated rabbits, the sauteur d'Alfort, that exhibits an abnormal locomotion behavior defined by the loss of the typical jumping that characterizes wild-type rabbits. Strikingly, individuals from this strain frequently adopt a bipedal gait using their front legs. Using a combination of experimental crosses and whole genome sequencing, we show that a single locus containing the RAR related orphan receptor B gene (RORB) explains the atypical gait of these rabbits. We found that a splice-site mutation in an evolutionary conserved site of RORB results in several aberrant transcript isoforms incorporating intronic sequence. This mutation leads to a drastic reduction of RORB-positive neurons in the spinal cord, as well as defects in differentiation of populations of spinal cord interneurons. Our results show that RORB function is required for the performance of saltatorial locomotion in rabbits.Author summaryRabbits and hares have a characteristic jumping gait composed of an alternate rhythmical movement of the forelimbs and a synchronous bilateral movement of the hindlimbs. We have now characterized a recessive mutation present in a specific strain of domestic rabbits (sauteur d'Alfort) that disrupts the jumping gait. The mutation causing this defect in locomotion pattern occurs in the gene coding for the transcription factor RORB that is normally expressed in many regions of the nervous system especially in the spinal cord dorsal horn. Our results show that expression of RORB is drastically reduced in the spinal cord of affected rabbits which results in a developmental defect. This study is an advance in our understanding how locomotion is controlled in vertebrates

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Study of ciliary transition zone proteins in Drosophila melanogaster

    No full text
    Les cils et les flagelles sont des organites présents à la surface cellulaire. Ils sont conservés chez les eucaryotes chez lesquels ils jouent un rôle essentiel dans la régulation de nombreux processus physiologiques. La zone de transition (ZT) est une structure complexe, localisée à la base des cils, qui assure une fonction importante dans l'assemblage et la régulation du trafic des constituants ciliaires. Trois complexes protéiques ont été identifiés à la ZT : MKS-JBTS, NPHP1-4-8 et NPHP5-CEP290. D'autres protéines sont également situées à la ZT telles que CBY et AZI1 mais leur interaction avec ces trois modules reste encore peu connue. Chez l'Homme, des mutations de gènes codant des protéines de la ZT sont associées à des maladies génétiques rares, les ciliopathies. Deux modes d'assemblage des cils ont été décrits : la ciliogenèse compartimentée et la ciliogenèse cytosolique. Alors que la fonction de la ZT au cours de la ciliogenèse compartimentée a été bien étudiée, son rôle dans la ciliogenèse cytosolique reste peu connu. La Drosophile possède deux sortes de cellules ciliées, les neurones sensoriels et les flagelles de spermatozoides dont les cils s'assemblent selon ces deux modes d'assemblage. Au cours de ma thèse, j'ai utilisé ce modèle pour analyser la fonction des protéines de la ZT dans ces deux types cellulaires. Mes résultats montrent que les protéines MKS ne jouent pas un rôle essentiel dans l'assemblage de la ZT dans ces deux types cellulaires. J'ai aussi révélé que CBY et AZI1, coopèrent pour assembler la ZT et qu'elle est nécessaire à l'ancrage du corps basal à la membrane plasmique. De plus, mes travaux ont démontré que KLP59D, une kinésine dépolymérisante des microtubules, est indispensable à la régulation de l'élongation de l'axonème au cours de la ciliogenèse cytosolique. En conclusion, ce travail apporte de nouvelles connaissances sur la dynamique d'assemblage de la ZT des cils et sur les mécanismes qui contrôlent l'élongation de l'axonèmeCilia and flagella are cellular organelles that protrude at the cell surface. They are composed of a microtubular cytoskeleton and they are highly conserved across eukaryotic species from plantae to Human. In mammals, they play essential functions during development and regulate numerous physiological processes in adults. At the ciliary base a complex structure called transition zone (TZ) is necessary for cilia assembly and regulation of ciliary components trafficking inside the cilia. Three protein complexes have been identified at the TZ : MKS-JBTS, NPHP1-4-8 and NPHP5-CEP290. Other TZ proteins such as CBY and AZI1 have been studied but their interaction with these 3 modules is not yet elucidated. In Human, mutations of genes encoding TZ proteins are associated with several genetic diseases called ciliopathies. Two different modes of cilia assembly have been identified: compartimentalized and cytosolic ciliogenesis. While TZ function in compartimentalized ciliogenesis is well studied, its role in cytosolic ciliogenesis remains poorly understood. In Drosophila, there are only two types of ciliated cells, sensory neurons and sperm flagella, representative of these two ciliogenesis pathways. During my PhD, I used Drosophila to study the function of TZ proteins during cilia assembly in these two ciliated cell types. My data show that proteins of the MKS complex do not play an essential role in TZ assembly in the cilia of sensory neurons and in spermatozoon flagella. I also demonstrated that CBY and AZI1 cooperate to assemble the TZ components and that the TZ is necessary to dock the basal bodies to the plasma membrane, one of the first important step in cilia assembly. Finally, I showed that KLP59D, a microtubule-depolymerising kinesin, is required to control axoneme elongation during the cytosolic ciliogenesis. In conclusion, this work brings new insights into the understanding of the dynamic assembly of TZ proteins and the mechanisms that regulate flagella elongatio

    Contrôle transcriptionnel des gènes ciliaires

    No full text
    Les cils, présents à la surface des cellules de nombreux eucaryotes, partagent une architecture commune qui peut se décliner en de nombreuses variations au sein d’une même espèce. La genèse des cils et la mise en place de leur diversité requièrent l’implication de gènes spécifiques. Ce contrôle est assuré par au moins deux classes de facteurs de transcription : les facteurs RFX (regulatory factor X), essentiels à l’assemblage de la plupart des cils, et les facteurs FOXJ1 (forkhead box J1), régulateurs clés de la croissance des cils mobiles. Ces facteurs ont des cibles distinctes et communes, et peuvent coopérer pour permettre la formation des cils. En collaborant avec d’autres facteurs de transcription spécifiques de différents types cellulaires, ils participent également à la spécialisation des cils. L’identification des gènes cibles des facteurs RFX et FOXJ1 est apparue comme une stratégie efficace pour identifier de nouveaux gènes ciliaires potentiellement impliqués dans les ciliopathies

    Single cell transcriptomic analysis of spinal Dmrt3 neurons in zebrafish and mouse identifies distinct subtypes and reveal novel subpopulations within the dI6 domain

    No full text
    The spinal locomotor network is frequently used for studies into how neuronal circuitsare formed and how cellular activity shape behavioral patterns. A population of dI6interneurons, marked by the Doublesex and mab-3 related transcription factor 3(Dmrt3), has been shown to participate in the coordination of locomotion and gaitsin horses, mice and zebrafish. Analyses of Dmrt3 neurons based on morphology,functionality and the expression of transcription factors have identified differentsubtypes. Here we analyzed the transcriptomes of individual cells belonging to theDmrt3 lineage from zebrafish and mice to unravel the molecular code that underliestheir subfunctionalization. Indeed, clustering of Dmrt3 neurons based on their geneexpression verified known subtypes and revealed novel populations expressing uniquemarkers. Differences in birth order, differential expression of axon guidance genes,neurotransmitters, and their receptors, as well as genes affecting electrophysiologicalproperties, were identified as factors likely underlying diversity. In addition, thecomparison between fish and mice populations offers insights into the evolutionarydriven subspecialization concomitant with the emergence of limbed locomotio

    Adult spinal Dmrt3 neurons receive direct somatosensory inputs from ipsi- and contralateral primary afferents and from brainstem motor nuclei

    No full text
    In the spinal cord, sensory-motor circuits controlling motor activity are situated in the dorso-ventral interface. The neurons identified by the expression of the transcription factor Doublesex and mab-3 related transcription factor 3 (Dmrt3) have previously been associated with the coordination of locomotion in horses (Equus caballus, Linnaeus, 1758), mice (Mus musculus, Linnaeus, 1758), and zebrafish (Danio rerio, F. Hamilton, 1822). Based on earlier studies, we hypothesized that, in mice, these neurons may be positioned to receive sensory and central inputs to relay processed commands to motor neurons. Thus, we investigated the presynaptic inputs to spinal Dmrt3 neurons using monosynaptic retrograde replication-deficient rabies tracing. The analysis showed that lumbar Dmrt3 neurons receive inputs from intrasegmental neurons, and intersegmental neurons from the cervical, thoracic, and sacral segments. Some of these neurons belong to the excitatory V2a interneurons and to plausible Renshaw cells, defined by the expression of Chx10 and calbindin, respectively. We also found that proprioceptive primary sensory neurons of type Ia2, Ia3, and Ib, defined by the expression of calbindin, calretinin, and Brn3c, respectively, provide presynaptic inputs to spinal Dmrt3 neurons. In addition, we demonstrated that Dmrt3 neurons receive inputs from brain areas involved in motor regulation, including the red nucleus, primary sensory-motor cortex, and pontine nuclei. In conclusion, adult spinal Dmrt3 neurons receive inputs from motor-related brain areas as well as proprioceptive primary sensory neurons and have been shown to connect directly to motor neurons. Dmrt3 neurons are thus positioned to provide sensory-motor control and their connectivity is suggestive of the classical reflex pathways present in the spinal cord
    corecore