199 research outputs found

    Effects of ac-field amplitude on the dielectric susceptibility of relaxors

    Full text link
    The thermally activated flips of the local spontaneous polarization in relaxors were simulated to investigate the effects of the applied-ac-field amplitude on the dielectric susceptibility. It was observed that the susceptibility increases with increasing the amplitude at low temperatures. At high temperatures, the susceptibility experiences a plateau and then drops. The maximum in the temperature dependence of susceptibility shifts to lower temperatures when the amplitude increases. A similarity was found between the effects of the amplitude and frequency on the susceptibility.Comment: 8 pages, 7 figures, Phys. Rev. B (in July 1st

    Interplay between static and dynamic polar correlations in relaxor Pb(Mg_{1/3}Nb_{2/3})O_{3}

    Full text link
    We have characterized the dynamics of the polar nanoregions in Pb(Mg1/3_{1/3}Nb2/3_{2/3})O3_{3} (PMN) through high-resolution neutron backscattering and spin-echo measurements of the diffuse scattering cross section. We find that the diffuse scattering intensity consists of \emph{both} static and dynamic components. The static component first appears at the Curie temperature Θ400\Theta \sim 400 K, while the dynamic component freezes completely at the temperature Tf200_{f} \sim 200 K; together, these components account for all of the observed spectral weight contributing to the diffuse scattering cross section. The integrated intensity of the dynamic component peaks near the temperature at which the frequency-dependent dielectric constant reaches a maximum (Tmax_{max}) when measured at 1 GHz, i. e. on a timescale of 1\sim 1 ns. Our neutron scattering results can thus be directly related to dielectric and infra-red measurements of the polar nanoregions. Finally, the global temperature dependence of the diffuse scattering can be understood in terms of just two temperature scales, which is consistent with random field models.Comment: (8 pages, 5 figures, submitted to Phys. Rev. B

    Neutron and X-ray diffraction study of cubic [111] field cooled Pb(Mg1/3Nb2/3)O3

    Full text link
    Neutron and x-ray diffraction techniques have been used to study the competing long and short-range polar order in the relaxor ferroelectric Pb(Mg1/3_{1/3}Nb2/3_{2/3})O3_{3} (PMN) under a [111] applied electric field. Despite reports of a structural transition from a cubic phase to a rhombohedral phase for fields E >> 1.7 kV/cm, we find that the bulk unit cell remains cubic (within a sensitivity of 90^{\circ}-α\alpha =0.03^{\circ})for fields up to 8 kV/cm. Furthermore, we observe a structural transition confined to the near surface volume or `skin' of the crystal where the cubic cell is transformed to a rhombohedral unit cell at Tc_{c}=210 K for E >> 4 kV/cm, for which 90^{\circ}-α\alpha=0.08 ±\pm 0.03^{\circ} below 50 K. While the bulk unit cell remains cubic, a suppression of the diffuse scattering and concomitant enhancement of the Bragg peak intensity is observed below Tc_{c}=210 K, indicating a more ordered structure with increasing electric field yet an absence of a long-range ferroelectric ground state in the bulk. The electric field strength has little effect on the diffuse scattering above Tc_{c}, however below Tc_{c} the diffuse scattering is reduced in intensity and adopts an asymmetric lineshape in reciprocal space. The absence of hysteresis in our neutron measurements (on the bulk) and the presence of two distinct temperature scales suggests that the ground state of PMN is not a frozen glassy phase as suggested by some theories but is better understood in terms of random fields introduced through the presence of structural disorder. Based on these results, we also suggest that PMN represents an extreme example of the two-length scale problem, and that the presence of a distinct skin maybe necessary for a relaxor ground state.Comment: 12 pages, 9 figure

    Transport and cooling of singly-charged noble gas ion beams

    Get PDF
    The transport and cooling of noble gas singly-charged ion beams by means of a Radio Frequency Quadrupole Cooler Buncher (RFQCB) have been studied at the LIMBE low energy beam line of the GANIL facility. Ions as light as 4He+^{4}He^+ have been cooled and stored before their extraction in bunches using H2H_2 as buffer gas. Bunches characteristics have been studied as a function of the parameters of the device. Sizeable transmissions of up to 10 % have been obtained. A detailed study of the lifetime of ions inside the buncher has been performed giving an estimate of the charge exchange cross-section. Results of a microscopic Monte-Carlo transport code show reasonable agreement with experimental data.Comment: 13 figure

    Evidence for anisotropic polar nanoregions in relaxor PMN: A neutron study of the elastic constants and anomalous TA phonon damping

    Full text link
    We use neutron scattering to characterize the acoustic phonons in the relaxor PMN and demonstrate the presence of an anisotropic damping mechanism directly related to short-range, polar correlations. For a large range of temperatures above Tc ~ 210, K, where dynamic polar correlations exist, acoustic phonons propagating along [1\bar{1}0] and polarized along [110] (TA2 phonons) are overdamped and softened across most of the Brillouin zone. By contrast, acoustic phonons propagating along [100] and polarized along [001] (TA1 phonons) are overdamped and softened for only a limited range of wavevectors. The anisotropy and temperature dependence of the acoustic phonon energy linewidth are directly correlated with the elastic diffuse scattering, indicating that polar nanoregions are the cause of the anomalous behavior. The damping and softening vanish for q -> 0, i.e. for long-wavelength acoustic phonons, which supports the notion that the anomalous damping is a result of the coupling between the relaxational component of the diffuse scattering and the harmonic TA phonons. Therefore, these effects are not due to large changes in the elastic constants with temperature because the elastic constants correspond to the long-wavelength limit. We compare the elastic constants we measure to those from Brillouin scattering and to values reported for pure PT. We show that while the values of C44 are quite similar, those for C11 and C12 are significantly less in PMN and result in a softening of (C11-C12) over PT. There is also an increased elastic anisotropy (2C44/(C11-C12)) versus that in PT. These results suggest an instability to TA2 acoustic fluctuations in relaxors. We discuss our results in the context of the debate over the "waterfall" effect and show that they are inconsistent with TA-TO phonon coupling or other models that invoke the presence of a second optic mode.Comment: (21 pages, 16 figures, to be published in Physical Review B

    Low temperature superlattice in monoclinic PZT

    Get PDF
    TEM has shown that the strongly piezoelectric material Pb(Zr0.52Ti0.48)O3 separates into two phases at low temperatures. The majority phase is the monoclinic phase previously found by x-ray diffraction. The minority phase, with a nanoscale coherence length, is a slightly distorted variant of the first resulting from the anti-phase rotation of the oxygen octahedra about [111]. This work clears up a recent controversy about the origin of superlattice peaks in these materials, and supports recent theoretical results predicting the coexistence of ferroelectric and rotational instabilities.Comment: REVTeX4, 4 eps figures embedded. JPG version of figs. 2&4 is also include

    A Universal Phase Diagram for PMN-xPT and PZN-xPT

    Full text link
    The phase diagram of the Pb(Mg1/3Nb2/3)O3 and PbTiO3 solid solution (PMN-xPT) indicates a rhombohedral ground state for x < 0.32. X-ray powder measurements by Dkhil et al. show a rhombohedrally split (222) Bragg peak for PMN-10%PT at 80 K. Remarkably, neutron data taken on a single crystal of the same compound with comparable q-resolution reveal a single resolution-limited (111) peak down to 50 K, and thus no rhombohedral distortion. Our results suggest that the structure of the outer layer of these relaxors differs from that of the bulk, which is nearly cubic, as observed in PZN by Xu et al.Comment: Replaced Fig. 3 with better versio

    Defect-induced condensation and central peak at elastic phase transitions

    Full text link
    Static and dynamical properties of elastic phase transitions under the influence of short--range defects, which locally increase the transition temperature, are investigated. Our approach is based on a Ginzburg--Landau theory for three--dimensional crystals with one--, two-- or three--dimensional soft sectors, respectively. Systems with a finite concentration nDn_{\rm D} of quenched, randomly placed defects display a phase transition at a temperature Tc(nD)T_c(n_{\rm D}), which can be considerably above the transition temperature Tc0T_c^0 of the pure system. The phonon correlation function is calculated in single--site approximation. For T>Tc(nD)T>T_c(n_{\rm D}) a dynamical central peak appears; upon approaching Tc(nD)T_c(n_{\rm D}), its height diverges and its width vanishes. Using an appropriate self--consistent method, we calculate the spatially inhomogeneous order parameter, the free energy and the specific heat, as well as the dynamical correlation function in the ordered phase. The dynamical central peak disappears again as the temperatur is lowered below Tc(nD)T_c(n_{\rm D}). The inhomogeneous order parameter causes a static central peak in the scattering cross section, with a finite kk width depending on the orientation of the external wave vector k{\bf k} relative to the soft sector. The jump in the specific heat at the transition temperatur of the pure system is smeared out by the influence of the defects, leading to a distinct maximum instead. In addition, there emerges a tiny discontinuity of the specific heat at Tc(nD)T_c(n_{\rm D}). We also discuss the range of validity of the mean--field approach, and provide a more realistic estimate for the transition temperature.Comment: 11 pages, 11 ps-figures, to appear in PR
    corecore