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Low-temperature superlattice in monoclinic PbZr0.52Ti 0.48O3

B. Noheda,* L. Wu, and Y. Zhu†

Brookhaven National Laboratory, Upton, New York 11973
~Received 24 April 2002; published 20 August 2002!

Transmission-electron microscopy has shown that the strongly piezoelectric material PbZr0.52Ti0.48O3 sepa-
rates into two phases at low temperatures. The majority phase is the monoclinic phase previously found by
x-ray diffraction. The minority phase, with a nanoscale coherence length, is a slightly distorted variant of the
first resulting from the antiphase rotation of the oxygen octahedra about@111#. This work clears up a recent
controversy about the origin of superlattice peaks in these materials, and supports recent theoretical results
predicting the coexistence of ferroelectric and rotational instabilities.
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Ferroelectric ceramics of PbZr12xTixO3 ~PZT! with com-
positions aroundx50.50 display anomalously high dielectric
and piezoelectric responses, which are related to the ‘‘mor-
photropic phase boundary’’~MPB!, the steep boundary sepa-
rating the rhombohedral~zirconium-rich! and tetragonal
~titanium-rich! phases of the phase diagram.1 The techno-
logical relevance of PZT as the active element in electrome-
chanical transducers has motivated a large amount of funda-
mental research in the last fifty years, aimed at revealing the
nature of the MPB and the origin of the outstanding physical
properties of these materials, which to this date are still not
well understood.

Recently, a monoclinic~M! phase with space group~sg!
Cm, has been discovered byx-ray powder diffraction at the
MPB of PZT,2–4 in between the rhombohedral~R! and te-
tragonal~T! phases, as shown in Fig. 1. The importance of
this new phase~called MA, after Ref. 5! is remarkable be-
cause, due to the lack of a symmetry axis, it allows for the
rotation of the ferroelectric polarization between the polar
axes of the R and T phases.3,6 The remaining symmetry ele-
ment is a mirror plane, the pseudocubic (11̄0) plane, which
is also common to T and R~with sg’s P4mm and R3m,
respectively!. Due to the near degeneracy of the different
phases at the MPB, the polarization rotation can also be eas-
ily achieved by applying an electric field, which induces the
monoclinic phase, and thus explains the high electrome-
chanical response observed in PZT.7,8

First-principles calculations have been able to reproduce
the intermediate monoclinic phase observed in PZT in excel-
lent agreement with the experiments, provided that the
atomic disorder in the Zr/Ti site is taken into account.6 Fur-
thermore, they have shown that this phase is directly related
to the very high electromechanical response of the ceramic
material~single crystals of PZT are not available! mainly due
to thed15 component of the piezoelectric tensor, which indi-
cates the easy rotation of the polarization in the monoclinic
plane.6 From a phenomenological point of view, it has re-
cently been shown that the monoclinic phase can be derived
from the Devonshire expansion of the free energy to eighth
order, while a twelfth-order expansion would be needed to
derive the lowest-symmetry triclinic perovskites.5 All the
above is a clear indication of the very high anharmonicity of
the energy potentials in PZT, which is also present in other
related systems.9

With decreasing temperatures PbZr0.52Ti0.48O3 ~PZT48!
transforms from a cubic to a tetragonal phase at about 660 K,
and from a tetragonal to a monoclinic phase at about 300
K.3,4 X-ray diffraction reveals no further phase transforma-
tion down to 20 K.3 The reported MA cell is rotated 45°
about thec axis with respect to the tetragonal one and is
double in volume, witham.bm.apA2 and cm.ap , with
ap.4 Å being the length of the cubic cell. However, re-
cently, Raginiet al.10 have observed superlattice~sl! reflec-
tions at low temperatures by transmission-electron micros-
copy~TEM! that are not consistent with the MA phase. These
sl reflections are also observed by neutron diffraction,4,11,12

but are not seen in the x-ray-diffraction patterns.3,10

The appearance of a superlattice is a common phenom-
enon in perovskites, related in most cases to the softening of
one or moreG25 zone-corner~R-point! phonons,13 which in-
volves rotations of the oxygen octahedra.14 In ferroelectric
perovskites, the octahedra tilts occur independently of the
cation displacements~associated with the softening of the
G15 zone-center mode! and therefore do not essentially affect
the ferroelectric properties. In PZT, such rotations have been
observed in the rhombohedral region of the phase diagram
~see Fig. 1!.15 At low temperatures, in the RLT phase, in
addition to the cation displacements along the pseudocubic
@111# direction, there is a tilt of the oxygen octahedra about

FIG. 1. Phase diagram of PbZr12xTixO3 ~PZT! around the mor-
photropic phase boundary adapted from Ref. 4.
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the @111# axis. This rotation doubles the unit cell14,15 and
produces sl reflections of the 1/2$hkl% type (h,k,l all odd!,18

with an intensity approximately proportional to the tilt angle.
To explain the sl reflections recently observed in mono-

clinic PZT, Ranjanet al.,12 based on a Rietveld analysis of
neutron powder-diffraction data, have proposed that the MA
phase transforms, at low temperatures, into a different mono-
clinic phase, with space groupPc, in which the MA unit cell
is doubled along thec direction due to an antiphase octahe-
dral tilt about thec axis. However, Rietveld analysis of dis-
ordered systems with low symmetry is not unambiguous due
to the number of constraints that need to be included. For
example, similar neutron patterns have also been success-
fully modeled by Frantiiet al.11 in terms of the coexistence
of monoclinic MA and rhombohedral RLT phases. In this pa-
per we clarify this controversy by means of TEM measure-
ments on a PZT48 sample at low temperatures. We show that
the MA phase persists at low temperatures and that the ob-
served superlattice originates from nanoregions of the
sample that undergo rotations of the oxygen octahedra about
the @111# direction, without altering the cation distortion.

TEM experiments were carried out using a JEOL 300-kV
field-emission microscope equipped with an energy filter and
low-temperature stages. Diffraction and image data were re-
corded using a parallel beam on either imaging plates or
charge coupled device cameras. The same ceramic pellets of
Ref. 3 were used in these experiments. The excellent quality
of the samples was established in previous x-ray-diffraction
work3 that showed very narrow Bragg peaks and very sharp
and well-defined phase transitions. TEM samples were pre-
pared using a standard thinning procedure, i.e., first mechani-
cally polishing down to less than 10mm, then ion-milling to
perforation with low-energy ion guns. The thickness of the
samples usually ranged from 50 to 100 nm. To minimize
multiple scattering, thinner regions~5–10 nm! were also
used. Electron diffraction presents the advantage of simulta-
neously acquiring dozens of reflections from a local area and
reaching far out in reciprocal space due to the high energy of
the incident electrons. In the presence of domain variants and
twins, formed due to the reduction of crystal symmetry, elec-
tron diffraction can unambiguously reveal the change of the
crystal symmetry, including those caused even by an ex-
tremely small lattice distortion, by the splitting of high-order
Bragg reflections.

Diffraction patterns containing sl reflections of the
1/2$hkl% (h,k,l all odd! type ~pseudocubic indexing will be
used unless stated otherwise! were observed in PZT48 at low
temperatures, in agreement with Raginiet al.10 However,
such reflections were also found to vary in intensity along
the sample. Figures 2~a! and 2~b! show two diffraction pat-
terns, both taken in the pseudocubic^110& zone of the recip-
rocal space at 87 K, corresponding to two different sample
areas. While the sl spots are clearly visible in Fig. 2~a!, they
are very weak and difficult to detect in Fig. 2~b!. The dark-
field images formed by the sl reflections in both areas are
presented in Figs. 2~c! and 2~d!. The dark background and
the bright spots correspond to the simple lattice and the su-
perlattice, respectively. These figures clearly show that the
sample consists of two phases and that only one of them

displays superlattices, contrary to the previously proposed
models.12 A series of dark-field images shows that the vol-
ume fraction of the superlattice phase varies in different ar-
eas of the sample from 0% to about 30% of the total volume,
clearly showing its minority character. Furthermore, these
images reveal a coherence length as short as 3 nm for the
superlattice phase@see Fig. 2~c!#. Linear scans of the inten-
sity peaks~the full width at half maximum! show that the
size distribution of the minority sl phase ranges from 3 to 10
nm, consistent with what we see in real space@Fig. 2~c!#.

Figure 3~a! shows the pattern expected in the^110& zone
of a pseudocubic perovskite phase. The tetragonal T, rhom-
bohedral RHT , and monoclinic MA phases of PZT show
similar patterns, since the distortion from the cubic phase is
very small. None of these phases have a sl of the type ob-
served in Fig. 2. However, as mentioned above, the RLT
phase of PZT~with sg R3c) is known to display similar sl
reflections,16,17which, together with its proximity in the PZT
phase diagram~see Fig. 1!, makes this phase a good candi-
date to check.18

Figure 4~a! shows the diffraction pattern in the^211& zone
at around 87 K. It is seen that both the fundamental and sl
reflections split along the@111# direction ~see insets!. Dy-
namic diffraction analysis shows that none of the twin vari-
ants for crystals with a rhombohedral symmetry (sgR3c)
yield this type of splitting20,21 and, thus, it is possible to
reject the presence of the RLT phase. The split is, however,
consistent with the monoclinic distortion. Moreover, the fact
that both main and sl reflections show the same kind of split-
ting clearly indicates that both phases share the same funda-
mental lattice~otherwise extra spots arising from a second
cell would be observed in Fig. 4, inset 2!.

Figure 4~b! shows an electron-diffraction pattern in the
^110& zone at the same temperature. The main reflections are
seen to split into three spots~see Fig. 4, inset 4! consistently
with the monoclinic symmetry, and with the reported MA
phase.3 It can also be noticed that the sl spots in this zone do

FIG. 2. Electron-diffraction patterns observed in the pseudocu-
bic ^110& zone of PbZr0.52Ti0.48O3 at 87 K in two different areas,
showing strong~a! and weak~b! superlattice reflections. The dark-
field images formed by the superlattice reflections are shown in~c!
and ~d! for two regions with strong and weak superlattice peaks,
respectively.
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not split~see Fig. 4, inset 3!, which indicates that only one of
the three observed twins is responsible for the sl phase and,
therefore, confirms the two-phase scenario. Further informa-
tion can yet be extracted from the diffraction experiments:
The extinction rules show that the mirror plane of the MA
phase is not present in the sl phase. Furthermore, the experi-
ments give extra information about the symmetry of this
phase by showing that the three-dimensional reciprocal lat-
tice is face centered, the real lattice being therefore body
centered.

Although other effects could also produce a superlattice
~i.e., cation ordering or antiparallel cation displacements!,
the fact that the sl reflections are observed with neutrons and
not with x rays indicates that they are due to rotations of the
oxygen octahedra, for which x rays are not very sensitive.
Bearing all the above in mind, we propose a model for the
minority sl phase in which the cations keep the MA distor-
tion, while the oxygen octahedra are rotated in an antiphase
fashion about@111#, as in the RLT phase. Figure 3~e! shows
the projection of the octahedra framework on the pseudocu-

bic (1̄10) mirror plane. The MA lattice vectorsaW m andcWm are

contained in the plane, whilebW m is perpendicular to it. After
the tilting, the unit cell doubles alongc ~dashed lines!, simi-
lar to the RLT-RHT phase transition for smaller Ti contents,
and the cell becomes body centered (sgIc). A unit cell can
be chosen to keep the standardc-centered space groupCc as
represented by the thick solid lines in the figure.

The sl reflections expected in the^110& zone for the new
Cc phase are depicted in Fig. 3~b!, and are in perfect agree-
ment with experiment~see Fig. 2!.22 The minority character
of the tilted phase, and the broadening effects associated with
the small size of the tilted regions, explains the low intensity
on the sl reflections in the neutron-diffraction patterns.11,12

Moreover, according to our model, the structure factor of the
1/2$hhh% reflections is much smaller than that of the
1/2$hkl% ones, which also explains why the 1/2$111% sl peak
is not observed with neutrons. The monoclinic space group
Pc recently proposed,12 in which the oxygen rotations are
along the@001# axis, can be discarded since it would give
rise to patterns such as those shown in Figs. 3~c! and 3~d!,
which contain sl reflections that were not observed~open
circles!.

The evolution of the sl reflections was monitored as a
function of temperature. The reflections started to disappear

FIG. 3. Sketch of the reciprocal lattice expected in the pseu-
cocubic^110& zone for~a! the monoclinicCm phase,~b! the mono-
clinic Cc phase,~c!, and ~d! the monoclinicPc phase~here using
Pc indices for clarity!. ~e! Real-space projection of the octahedral

framework on the pseudocubic (11̄0) plane, showing the tilt pattern
responsible for the observed sl reflections. Oxygen atoms are lo-
cated at the vertices of the octahedra, and Zr/Ti are located at the
center of the octahedra. Filled and open circles represent Zr/Ti at
y50 andy51/2, respectively. Pb atoms are omitted for clarity. The
projection of the newIc unit cell ~ABCD! with a doubledc con-
stant, formed after the antiphase tilting along the pseudocubic@111#
direction, is marked by dashed lines. TheCc unit cell ~ABDE! with
am8 5A3am.10.1 Å,bm8 5bm.5.71 Å,cm8 52cm.8.27 Å, andb
.145.5° is indicated by the thick lines.

FIG. 4. Electron-diffraction patterns in the^211& ~a! and ^110&
~b! zones at about 87 K. Insets 1–4 show an enlargement of the
regions indicated by arrows, respectively.~a! shows two MA vari-
ants,V0 andV1~inset 2!, which have a reflection twin relationship

with (1̄01) as their twin plane. Both MA variants have superlattice
spots as shown in inset 1. In~b! the fundamental spots split into
three sets of spots, which correspond to three MA variantsV0 ,V2,
andV3. TheV0 andV2, andV0 andV3 both yield a reflection twin
relationship with~101! and~011! as their twin planes, respectively.
Careful examination shows that there is only one set of superlattice
spots, which correspond to theV3 spots, indicating that onlyV3

shows the minority phase.
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at T5150 K in certain areas of the sample, but were still
visible in other areas atT5200 K. At aboutT5230 K no
superlattice could be found, in agreement with Raginiet al.10

This behavior suggests that local internal inhomogeneities or
local stresses~most likely originating from cation disorder!
cause phase separation by favoring the octahedra tilts in cer-
tain regions of the sample, at low temperatures, and that the
transition temperature between the tilted and nontilted phases
depends to a large extent on the local environment. This is in
perfect agreement with calculations by Fornari and Singh,
who predict an instability of the rotational degrees of free-
dom, comparable to the ferroelectric one, as well as a strong
pressure dependence of these.23 Further studies need to be
done to clarify whether the tilts are associated with Zr-/Ti-
rich regions.

In summary, our results clearly show that the MA phase,
which is known to be directly related to the unusual piezo-
electric and ferroelectric properties of PZT and related sys-
tems, remains stable at low temperatures, contrary to recent
reports. Some areas of the sample, as small as 3 nm, undergo
rotations of the oxygen octahedra about the@111# direction,
similar to those of the neighboring RLT phase, that lower the
symmetry but do not modify the fundamental lattice, there-
fore keeping the ferroelectric properties basically unaltered.
The temperature evolution of the tilted regions supports the

theoretical results of Fornari and Singh that predict the pos-
sible coexistence of ferroelectric and rotational instabilities
due to local stress fields.23

Recently, a paper by Hatchet al.24 has appeared which
points out that the correct space group of the low tempera-
ture monoclinic phase proposed by Ranjanet al.,12 should be
Cc instead ofPc, and which reports aCc unit cell with
octahedra rotations about@001# that results in the same space
group as the one reported here for the@111# rotations. Our
@111# rotation model is similar to the one of the R phase with
low Ti concentration at low temperatures. Furthermore,
while according to Hatchet al. theCm phase transforms into
Cc phase at low temperatures, here we show that theCc
phase is only minority and that theCm phase is still present
at low temperatures.
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