1,484 research outputs found

    Factors associated with early childhood caries in Chile

    Get PDF
    AbstractObjectiveTo determine the prevalence of caries and identify the associated factors among children aged 2 and 4 years in southern Chile.MethodsA cross-sectional study was conducted in a random sample of 2,987 children. Dental examinations were performed in all participating children and a self-administered survey was administered to their primary caregivers. The statistical analysis included a zero inflated negative binomial regression model.ResultsThe prevalence of caries was 20.3% for 2-year-olds and 52.7% for 4-year-olds. The factors associated with caries included the following: living in the Bio-Bío region, PR2year-old: 1.65 (1.10-2.47), PR4year-old: 1.44 (1.18-1.75) and having a low socioeconomic position, PR2year-old: 5.39 (2.14-13.57), PR4year-old: 3.71 (2.68-5.13) or a medium socioeconomic position, PR2year-old: 2.79 (1.06-7.33), PR4year-old: 2.70 (1.92-3.79). In 4-year-olds, a high frequency of consuming sugary drinks at bedtime (PR: 1.30; 1.06-1.59), not brushing teeth daily (PR: 1.37; 1.18-1.60), and the presence of gingivitis (PR: 1.64; 1.28-2.09) were also associated with caries.ConclusionsThe high prevalence of caries in this young group is concerning. The factors associated with caries identified in this study could help in the design of preventive interventions at early ages

    Determinación de marcadores de lesión de almacenamiento en unidades de glóbulos rojos conservadas

    Get PDF
    65 p.El almacenamiento de las unidades de GR para ser usadas en terapia transfusional reduce la eficacia de estos componentes sanguíneos. El tiempo de almacenamiento involucra diferentes marcadores de lesión del eritrocito, incluyendo cambios metabólicos, morfológicos, pérdida de carbohidratos, lípidos y proteínas, alteraciones en la secreción de potasio, hemólisis, entre otros. En este estudio, se determinaron 3 marcadores de lesión: el cambio morfológico de los GR, los niveles de potasio, sodio y pH y la hemólisis.Se obtuvieron 3 unidades de glóbulos rojos, las cuales se conservaron en CPD-SAGM durante 42 días. Para la observación de cambios morfológicos, se utilizó la tinción Hemacolor®, con el posterior recuento semi-cuantitativo de equinocitos, mediante microscopía óptica. Los niveles de K+ junto con el Na+ y el pH, fueron medidos por el método Ion Selective Electrode. Para determinar el porcentaje de hemólisis se midió la cantidad de hemoglobina en el concentrado de GR y en el sobrenadante mediante el método de Drabkin. Los resultados para cambios morfológicos evidenciaron un aumento gradual de equinocitos, alcanzando recuentos marcados a los 42 días con valores estadísticamente significativos (p 0,001). La medición de los niveles de marcadores de almacenamiento con las técnicas utilizadas en este estudio, arrojaron valores esperados y similares a los demostrados en otros estudios. Es importante una mejor comprensión de los marcadores de lesión de almacenamiento de los GR y definir los efectos clínicos de éstos, en pacientes que reciban terapia transfusional

    Analysis regarding the more relevant characteristics of the necessity in the law 20.480

    Get PDF
    En el presente artículo, el autor ofrece una revisión de las características más relevantes de la nueva causal de estado de necesidad introducida en Chile por la Ley n° 20.480 y su incorporación dogmática a la teoría del delito. Se entregan algunos antecedentes respecto de su origen y se exponen fundamentos que permiten explicar el carácter doble de su naturaleza jurídica: causal de justificación o causal de exculpación, dependiendo del análisis comparativo entre el mal causado y mal evitado. En el trabajo se revisan los requisitos impuestos por el legislador para su aplicación, la interpretación que puede otorgárseles y los problemas que se advierten en su formulación.In this paper, the author offers a review of the most relevant features of the new legal excuse of necessity, introduced in Chile by Law n° 20.480, and its dogmatic incorporation into criminal law theory. The author presents some antecedents about its origin, and exposes some reasons that explain the double role of its legal nature: justification or exculpation, depending on comparative analysis between the harm caused and the harm avoided. In this essay are reviewed the conditions imposed by the legislator for its application, possible interpretations of these conditions, and the problems that can be noticed in the formulation of the same conditions

    Metodología de gestión de proyectos para la división de infraestructura y proyectos del Banco Popular

    Get PDF
    Proyecto de graduación (Maestría en Gerencia de Proyectos) Instituto Tecnológico de Costa Rica, Área Académica de Gerencia de Proyectos, 2015.The Division of infrastructure projects of Banco Popular has among its main functions to manage the institutional infrastructure projects, manage and administer the institutional maintenance of buildings and lease expiration control contracts for leased premises; directing the efforts of these areas to objectives of the Directorate of Administrative Support and Corporate Strategic Plan. This research proposes a professional project management methodology for the division of infrastructure and projects of the bank, specifically directed to the area of institutional infrastructure projects. To develop the reference framework proposed in project management it is required to make a diagnose of the current situation that Division faces up regarding to maturity in project management, tools, processes, procedures, and skills, to determine the level of project management maturity in the Division. Additionally, it will determine the critical success factors to be taken into account for the development of projects at the DIP. Once completed, the analysis of the level of maturity it will be demonstrated that it does not have a standard methodology for managing institutional infrastructure projects, and lacks of metrics, policies, processes and tools to evaluate the performance of projects, which is adversely affecting the performance of projects. The development of the proposed methodology is based on the PMBOK® (Guide to the Project Management the PMI®) and given that the Bank is an institution of nonstate public law governing, it operates under the rules of public law, these are considered the factors of greatest impact on public sector projects in regards of the government's extension to the PMBOK® Guide. Finally, it concluded that due to the lack of a project management methodology the maturity level of the Division is impacted, making a standard in the activities and tools to make managing projects successful. And it is recommended to implement the proposed methodology in a period not exceeding one year, considering a balanced matrix structure in the Division, such that, allow to keep the management in institutional maintenance and management of institutional projects . Key words: Institutional infrastructure projects, PMI®, PMBok®, maturity in project management, project management, critical success factors, methodology and public institution.Instituto Tecnológico de Costa Rica. Área Académica de Gerencia de Proyectos; Banco Popular

    Entangling two mode thermal fields through quantum erasing

    Full text link
    We investigate a possible scheme for entangling two mode thermal fields through the quantum erasing process, in which an atom is coupled with two mode fields via the interaction governed by the two-mode two-photon Jaynes-Cummings model. The influence of phase decoherence on the entanglement of two mode fields is discussed. It is found that quantum erasing process can transfer part of entanglement between the atom and fields to two mode fields initially in the thermal states. The entanglement achieved by fields heavily depends on their initial temperature and the detuning. The entanglement of stationary state is also investigated.Comment: 11 pages, 6 figures, a minor mistake is correcte

    Growing modulator agents for the synthesis of Al-MOF-type materials based on assembled 1D structural sub-domains

    Full text link
    [EN] Novel aluminium MOF-type materials structured by 1D subdomains, such as organic-inorganic nanoribbons, were synthesized by modifying the conditions of solvothermal synthesis and the nature of the solvents in the presence of aryl monocarboxylate linkers with long alkyl chains, which acted as growth-modulating agents. Specifically, three different families of materials were prepared with various morphological characteristics: (i) isoreticular MIL-53(Al)-type materials, (ii) mesoscopic metalorganic structures and (iii) lamellar aluminium MOFs. The length of the alkyl chain in the aryl linker and the hydrophobic/hydrophilic nature of the solvothermal synthesis media determined the structuration level that was achieved. The derived Al-MOFs are active and stable catalysts for the synthesis of fine chemicals. This was illustrated by the efficient synthesis of 2,3-dihydro-2,2,4-trimethyl-1H-1,5-benzodiazepine.The authors are grateful for financial support from the Spanish Government under MAT2014-52085-C2-1-P, MAT2017-82288-C2-1-P and Severo Ochoa Excellence Program SEV-2016-0683. J. M. M. thanks predoctoral fellowships from MINECO for economic support. The European Union is also acknowledged for ERC-AdG-2014-671093-SynCatMatchMoreno, JM.; Velty, A.; Vidal Moya, JA.; Díaz Morales, UM.; Corma Canós, A. (2018). Growing modulator agents for the synthesis of Al-MOF-type materials based on assembled 1D structural sub-domains. Dalton Transactions. 47(15):5492-5502. https://doi.org/10.1039/C8DT00394GS549255024715Li, B., Wen, H.-M., Wang, H., Wu, H., Tyagi, M., Yildirim, T., … Chen, B. (2014). A Porous Metal–Organic Framework with Dynamic Pyrimidine Groups Exhibiting Record High Methane Storage Working Capacity. Journal of the American Chemical Society, 136(17), 6207-6210. doi:10.1021/ja501810rGetman, R. B., Bae, Y.-S., Wilmer, C. E., & Snurr, R. Q. (2011). Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks. Chemical Reviews, 112(2), 703-723. doi:10.1021/cr200217cSuh, M. P., Park, H. J., Prasad, T. K., & Lim, D.-W. (2011). Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews, 112(2), 782-835. doi:10.1021/cr200274sLiu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., & Su, C.-Y. (2014). Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev., 43(16), 6011-6061. doi:10.1039/c4cs00094cChughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A., & Verpoort, F. (2015). Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 44(19), 6804-6849. doi:10.1039/c4cs00395kStavila, V., Talin, A. A., & Allendorf, M. D. (2014). MOF-based electronic and opto-electronic devices. Chem. Soc. Rev., 43(16), 5994-6010. doi:10.1039/c4cs00096jDíaz, U., & Corma, A. (2016). Ordered covalent organic frameworks, COFs and PAFs. From preparation to application. Coordination Chemistry Reviews, 311, 85-124. doi:10.1016/j.ccr.2015.12.010Li, M., Schnablegger, H., & Mann, S. (1999). Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature, 402(6760), 393-395. doi:10.1038/46509Inagaki, S., Guan, S., Ohsuna, T., & Terasaki, O. (2002). An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature, 416(6878), 304-307. doi:10.1038/416304aDing, S.-Y., & Wang, W. (2013). Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev., 42(2), 548-568. doi:10.1039/c2cs35072fCorma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924Serre, C., Millange, F., Thouvenot, C., Noguès, M., Marsolier, G., Louër, D., & Férey, G. (2002). Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy. Journal of the American Chemical Society, 124(45), 13519-13526. doi:10.1021/ja0276974Alberti, G., Costantino, U., Allulli, S., & Tomassini, N. (1978). Crystalline Zr(R-PO3)2 and Zr(R-OPO3)2 compounds (R = organic radical). Journal of Inorganic and Nuclear Chemistry, 40(6), 1113-1117. doi:10.1016/0022-1902(78)80520-xCorma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592González-Arellano, C., Corma, A., Iglesias, M., & Sánchez, F. (2004). Pd(II)-Schiff Base Complexes Heterogenised on MCM-41 and Delaminated Zeolites as Efficient and Recyclable Catalysts for the Heck Reaction. Advanced Synthesis & Catalysis, 346(13-15), 1758-1764. doi:10.1002/adsc.200404119Opanasenko, M., Shamzhy, M., Yu, F., Zhou, W., Morris, R. E., & Čejka, J. (2016). Zeolite-derived hybrid materials with adjustable organic pillars. Chemical Science, 7(6), 3589-3601. doi:10.1039/c5sc04602eBellussi, G., Millini, R., Montanari, E., Carati, A., Rizzo, C., Parker, W. O., … Zanardi, S. (2012). A highly crystalline microporous hybrid organic–inorganic aluminosilicate resembling the AFI-type zeolite. Chemical Communications, 48(59), 7356. doi:10.1039/c2cc33417hBellussi, G., Carati, A., Di Paola, E., Millini, R., Parker, W. O., Rizzo, C., & Zanardi, S. (2008). Crystalline hybrid organic–inorganic alumino-silicates. Microporous and Mesoporous Materials, 113(1-3), 252-260. doi:10.1016/j.micromeso.2007.11.024Gomez, G. E., Bernini, M. C., Brusau, E. V., Narda, G. E., Vega, D., Kaczmarek, A. M., … Nazzarro, M. (2015). Layered exfoliable crystalline materials based on Sm-, Eu- and Eu/Gd-2-phenylsuccinate frameworks. Crystal structure, topology and luminescence properties. Dalton Transactions, 44(7), 3417-3429. doi:10.1039/c4dt02844aAmo-Ochoa, P., Welte, L., González-Prieto, R., Sanz Miguel, P. J., Gómez-García, C. J., Mateo-Martí, E., … Zamora, F. (2010). Single layers of a multifunctional laminar Cu(i,ii) coordination polymer. Chemical Communications, 46(19), 3262. doi:10.1039/b919647aRodenas, T., Luz, I., Prieto, G., Seoane, B., Miro, H., Corma, A., … Gascon, J. (2014). Metal–organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 14(1), 48-55. doi:10.1038/nmat4113Cai, G., & Jiang, H.-L. (2016). A Modulator-Induced Defect-Formation Strategy to Hierarchically Porous Metal-Organic Frameworks with High Stability. Angewandte Chemie International Edition, 56(2), 563-567. doi:10.1002/anie.201610914Garibay, S. J., & Cohen, S. M. (2010). Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chemical Communications, 46(41), 7700. doi:10.1039/c0cc02990dSenkovska, I., Hoffmann, F., Fröba, M., Getzschmann, J., Böhlmann, W., & Kaskel, S. (2009). New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc=2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc=4,4′-biphenyl dicarboxylate). Microporous and Mesoporous Materials, 122(1-3), 93-98. doi:10.1016/j.micromeso.2009.02.020Carson, C. G., Hardcastle, K., Schwartz, J., Liu, X., Hoffmann, C., Gerhardt, R. A., & Tannenbaum, R. (2009). Synthesis and Structure Characterization of Copper Terephthalate Metal-Organic Frameworks. European Journal of Inorganic Chemistry, 2009(16), 2338-2343. doi:10.1002/ejic.200801224Yang, Q., Vaesen, S., Vishnuvarthan, M., Ragon, F., Serre, C., Vimont, A., … Maurin, G. (2012). Probing the adsorption performance of the hybrid porous MIL-68(Al): a synergic combination of experimental and modelling tools. Journal of Materials Chemistry, 22(20), 10210. doi:10.1039/c2jm15609aGarcía-García, P., Moreno, J. M., Díaz, U., Bruix, M., & Corma, A. (2016). Organic–inorganic supramolecular solid catalyst boosts organic reactions in water. Nature Communications, 7(1). doi:10.1038/ncomms10835Moreno, J. M., Navarro, I., Díaz, U., Primo, J., & Corma, A. (2016). Single-Layered Hybrid Materials Based on 1D Associated Metalorganic Nanoribbons for Controlled Release of Pheromones. Angewandte Chemie International Edition, 55(37), 11026-11030. doi:10.1002/anie.201602215Ben-Cherif, W., Gharbi, R., Sebai, H., Dridi, D., Boughattas, N. A., & Ben-Attia, M. (2010). Neuropharmacological screening of two 1,5-benzodiazepine compounds in mice. Comptes Rendus Biologies, 333(3), 214-219. doi:10.1016/j.crvi.2009.09.015Ha, S. K., Shobha, D., Moon, E., Chari, M. A., Mukkanti, K., Kim, S.-H., … Kim, S. Y. (2010). Anti-neuroinflammatory activity of 1,5-benzodiazepine derivatives. Bioorganic & Medicinal Chemistry Letters, 20(13), 3969-3971. doi:10.1016/j.bmcl.2010.04.133Wang, L.-Z., Li, X.-Q., & An, Y.-S. (2015). 1,5-Benzodiazepine derivatives as potential antimicrobial agents: design, synthesis, biological evaluation, and structure–activity relationships. Organic & Biomolecular Chemistry, 13(19), 5497-5509. doi:10.1039/c5ob00655dHuang, Y., Khoury, K., Chanas, T., & Dömling, A. (2012). Multicomponent Synthesis of Diverse 1,4-Benzodiazepine Scaffolds. Organic Letters, 14(23), 5916-5919. doi:10.1021/ol302837hDelpuech, J. J., Khaddar, M. R., Peguy, A. A., & Rubini, P. R. (1975). Octahedral and tetrahedral solvates of the aluminum cation. Study of the exchange of free and bound organophosphorus ligands by nuclear magnetic resonance spectroscopy. Journal of the American Chemical Society, 97(12), 3373-3379. doi:10.1021/ja00845a016Gascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959kGarcía-García, P., Müller, M., & Corma, A. (2014). MOF catalysis in relation to their homogeneous counterparts and conventional solid catalysts. Chemical Science, 5(8), 2979. doi:10.1039/c4sc00265bDai-Il, J., Tae-wonchoi, C., Yun-Young, K., In-Shik, K., You-Mi, P., Yong-Gyun, L., & Doo-Hee, J. (1999). Synthesis Of 1,5-Benzodiazepine Derivatives. Synthetic Communications, 29(11), 1941-1951. doi:10.1080/00397919908086183Pozarentzi, M., Stephanidou-Stephanatou, J., & Tsoleridis, C. A. (2002). An efficient method for the synthesis of 1,5-benzodiazepine derivatives under microwave irradiation without solvent. Tetrahedron Letters, 43(9), 1755-1758. doi:10.1016/s0040-4039(02)00115-6Varala, R., Enugala, R., & Adapa, S. R. (2007). p-nitrobenzoic acid promoted synthesis of 1,5-benzodiazepine derivatives. Journal of the Brazilian Chemical Society, 18(2). doi:10.1590/s0103-50532007000200008Reddy, B. M., & Sreekanth, P. M. (2003). An efficient synthesis of 1,5-benzodiazepine derivatives catalyzed by a solid superacid sulfated zirconia. Tetrahedron Letters, 44(24), 4447-4449. doi:10.1016/s0040-4039(03)01034-7Tajbakhsh, M., Heravi, M. M., Mohajerani, B., & Ahmadi, A. N. (2006). Solid acid catalytic synthesis of 1,5-benzodiazepines: A highly improved protocol. Journal of Molecular Catalysis A: Chemical, 247(1-2), 213-215. doi:10.1016/j.molcata.2005.11.033Majid, S. A., Khanday, W. A., & Tomar, R. (2012). Synthesis of 1,5-Benzodiazepine and Its Derivatives by Condensation Reaction Using H-MCM-22 as Catalyst. Journal of Biomedicine and Biotechnology, 2012, 1-6. doi:10.1155/2012/510650Climent, M. J., Corma, A., Iborra, S., & Santos, L. L. (2009). Multisite Solid Catalyst for Cascade Reactions: The Direct Synthesis of Benzodiazepines from Nitro Compounds. Chemistry - A European Journal, 15(35), 8834-8841. doi:10.1002/chem.200900492Afzal Pasha, M., & Puttaramegowda Jayashankara, V. (2006). Synthesis of 1,5-Benzodiazepine Derivatives Catalysed by Zinc Chloride. HETEROCYCLES, 68(5), 1017. doi:10.3987/com-05-10647Balakrishna, M. ., & Kaboudin, B. (2001). A simple and new method for the synthesis of 1,5-benzodiazepine derivatives on a solid surface. Tetrahedron Letters, 42(6), 1127-1129. doi:10.1016/s0040-4039(00)02168-7Adharvana Chari, M., & Syamasundar, K. (2005). Polymer (PVP) supported ferric chloride: an efficient and recyclable heterogeneous catalyst for high yield synthesis of 1,5-benzodiazepine derivatives under solvent free conditions and microwave irradiation. Catalysis Communications, 6(1), 67-70. doi:10.1016/j.catcom.2004.10.009Timofeeva, M. N., Prikhod’ko, S. A., Makarova, K. N., Malyshev, M. E., Panchenko, V. N., Ayupov, A. B., & Jhung, S. H. (2017). Iron-containing materials as catalysts for the synthesis of 1,5-benzodiazepine from 1,2-phenylenediamine and acetone. Reaction Kinetics, Mechanisms and Catalysis, 121(2), 689-699. doi:10.1007/s11144-017-1190-2Fazaeli, R., & Aliyan, H. (2007). Clay (KSF and K10)-supported heteropoly acids: Friendly, efficient, reusable and heterogeneous catalysts for high yield synthesis of 1,5-benzodiazepine derivatives both in solution and under solvent-free conditions. Applied Catalysis A: General, 331, 78-83. doi:10.1016/j.apcata.2007.07.030Huang, G., Yang, Q., Xu, Q., Yu, S.-H., & Jiang, H.-L. (2016). Polydimethylsiloxane Coating for a Palladium/MOF Composite: Highly Improved Catalytic Performance by Surface Hydrophobization. Angewandte Chemie International Edition, 55(26), 7379-7383. doi:10.1002/anie.201600497Jeganathan, M., & Pitchumani, K. (2014). Solvent-Free Syntheses of 1,5-Benzodiazepines Using HY Zeolite as a Green Solid Acid Catalyst. ACS Sustainable Chemistry & Engineering, 2(5), 1169-1176. doi:10.1021/sc400560

    Selective Introduction of Acid Sites in Different Confined Positions in ZSM-5 and Its Catalytic Implications

    Full text link
    [EN] Controlling the location of acid sites in zeolites can have a great effect on catalysis. In this work we face the objective of directing the location of AI into the 10R channels of ZSM-5 by taking advantage of the structural preference of B to occupy certain positions at the channel intersections, as suggested by theoretical calculations. The synthesis of B-Al-ZSM-5 zeolites with variable Si/Al and Si/B ratios, followed by B removal in a postsynthesis treatment, produces ZSM-5 samples enriched in Al occupying positions at 10R channels. The location of the acid sites is determined on the basis of the product distribution of 1-hexene cracking as a test reaction. The higher selectivity to propene and lower C-4(=)/C-3(=) ratio in the samples synthesized with B and subsequently deboronated can be related to a larger concentration of acid sites in 10R channels, where monomolecular cracking occurs. Finally, several ZSM-5 samples have been tested in the methanol to propene reaction, and those synthesized through the B -assisted method show longer catalytic lifetime, higher propene yield, and lower yield of alkanes and aromatics.This work was supported by the European Union through ERC-AdG-2014-671093 (SynCatMatch) and the Spanish Government-MINECO through "Severo Ochoa" (SEV-2016-0683) and CTQ2015-70126-R. The Electron Microscopy Service of the UPV is acknowledged for their help in sample characterization. Red Espanola de Supercomputacion (RES) and Centre de Calcul de la Universitat de Valencia are gratefully acknowledged for computational resources and technical support. C.L. acknowledges the China Scholarship Council (CSC) for a Ph.D. fellowshipLi, C.; Vidal Moya, JA.; Miguel, PJ.; Dedecek, J.; Boronat Zaragoza, M.; Corma Canós, A. (2018). Selective Introduction of Acid Sites in Different Confined Positions in ZSM-5 and Its Catalytic Implications. ACS Catalysis. 8(8):7688-7697. https://doi.org/10.1021/acscatal.8b02112S7688769788Brand, H. V., Curtiss, L. A., & Iton, L. E. (1993). Ab initio molecular orbital cluster studies of the zeolite ZSM-5. 1. Proton affinities. The Journal of Physical Chemistry, 97(49), 12773-12782. doi:10.1021/j100151a024Kassab, E., Seiti, K., & Allavena, M. (1988). Determination of structure and acidity scales in zeolite systems by ab initio and pseudopotential calculations. The Journal of Physical Chemistry, 92(23), 6705-6709. doi:10.1021/j100334a043Brändle, M., & Sauer, J. (1998). Acidity Differences between Inorganic Solids Induced by Their Framework Structure. A Combined Quantum Mechanics/Molecular Mechanics ab Initio Study on Zeolites. Journal of the American Chemical Society, 120(7), 1556-1570. doi:10.1021/ja9729037Jones, A. J., Carr, R. T., Zones, S. I., & Iglesia, E. (2014). Acid strength and solvation in catalysis by MFI zeolites and effects of the identity, concentration and location of framework heteroatoms. Journal of Catalysis, 312, 58-68. doi:10.1016/j.jcat.2014.01.007Jones, A. J., & Iglesia, E. (2015). The Strength of Brønsted Acid Sites in Microporous Aluminosilicates. ACS Catalysis, 5(10), 5741-5755. doi:10.1021/acscatal.5b01133Derouane, E. G. (1998). Zeolites as solid solvents1Paper presented at the International Symposium `Organic Chemistry and Catalysis’ on the occasion of the 65th birthday of Prof. H. van Bekkum, Delft, Netherlands, 2–3 October 1997.1. Journal of Molecular Catalysis A: Chemical, 134(1-3), 29-45. doi:10.1016/s1381-1169(98)00021-1Knott, B. C., Nimlos, C. T., Robichaud, D. J., Nimlos, M. R., Kim, S., & Gounder, R. (2017). Consideration of the Aluminum Distribution in Zeolites in Theoretical and Experimental Catalysis Research. ACS Catalysis, 8(2), 770-784. doi:10.1021/acscatal.7b03676Gounder, R., & Iglesia, E. (2013). The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions. Chemical Communications, 49(34), 3491. doi:10.1039/c3cc40731dJones, A. J., & Iglesia, E. (2014). Kinetic, Spectroscopic, and Theoretical Assessment of Associative and Dissociative Methanol Dehydration Routes in Zeolites. Angewandte Chemie International Edition, 53(45), 12177-12181. doi:10.1002/anie.201406823Wang, S., & Iglesia, E. (2017). Catalytic diversity conferred by confinement of protons within porous aluminosilicates in Prins condensation reactions. Journal of Catalysis, 352, 415-435. doi:10.1016/j.jcat.2017.06.012Ghorbanpour, A., Rimer, J. D., & Grabow, L. C. (2014). Periodic, vdW-corrected density functional theory investigation of the effect of Al siting in H-ZSM-5 on chemisorption properties and site-specific acidity. Catalysis Communications, 52, 98-102. doi:10.1016/j.catcom.2014.04.005Mallikarjun Sharada, S., Zimmerman, P. M., Bell, A. T., & Head-Gordon, M. (2013). Insights into the Kinetics of Cracking and Dehydrogenation Reactions of Light Alkanes in H-MFI. The Journal of Physical Chemistry C, 117(24), 12600-12611. doi:10.1021/jp402506mJanda, A., & Bell, A. T. (2013). Effects of Si/Al Ratio on the Distribution of Framework Al and on the Rates of Alkane Monomolecular Cracking and Dehydrogenation in H-MFI. Journal of the American Chemical Society, 135(51), 19193-19207. doi:10.1021/ja4081937Olsbye, U., Svelle, S., Bjørgen, M., Beato, P., Janssens, T. V. W., Joensen, F., … Lillerud, K. P. (2012). Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivity. Angewandte Chemie International Edition, 51(24), 5810-5831. doi:10.1002/anie.201103657Van Speybroeck, V., De Wispelaere, K., Van der Mynsbrugge, J., Vandichel, M., Hemelsoet, K., & Waroquier, M. (2014). First principle chemical kinetics in zeolites: the methanol-to-olefin process as a case study. Chem. Soc. Rev., 43(21), 7326-7357. doi:10.1039/c4cs00146jTian, P., Wei, Y., Ye, M., & Liu, Z. (2015). Methanol to Olefins (MTO): From Fundamentals to Commercialization. ACS Catalysis, 5(3), 1922-1938. doi:10.1021/acscatal.5b00007Svelle, S., Joensen, F., Nerlov, J., Olsbye, U., Lillerud, K.-P., Kolboe, S., & Bjørgen, M. (2006). Conversion of Methanol into Hydrocarbons over Zeolite H-ZSM-5:  Ethene Formation Is Mechanistically Separated from the Formation of Higher Alkenes. Journal of the American Chemical Society, 128(46), 14770-14771. doi:10.1021/ja065810aBJORGEN, M., SVELLE, S., JOENSEN, F., NERLOV, J., KOLBOE, S., BONINO, F., … OLSBYE, U. (2007). Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species. Journal of Catalysis, 249(2), 195-207. doi:10.1016/j.jcat.2007.04.006Wang, S., Chen, Y., Wei, Z., Qin, Z., Ma, H., Dong, M., … Wang, J. (2015). Polymethylbenzene or Alkene Cycle? Theoretical Study on Their Contribution to the Process of Methanol to Olefins over H-ZSM-5 Zeolite. The Journal of Physical Chemistry C, 119(51), 28482-28498. doi:10.1021/acs.jpcc.5b10299Teketel, S., Olsbye, U., Lillerud, K.-P., Beato, P., & Svelle, S. (2010). Selectivity control through fundamental mechanistic insight in the conversion of methanol to hydrocarbons over zeolites. Microporous and Mesoporous Materials, 136(1-3), 33-41. doi:10.1016/j.micromeso.2010.07.013Pinar, A. B., Márquez-Álvarez, C., Grande-Casas, M., & Pérez-Pariente, J. (2009). Template-controlled acidity and catalytic activity of ferrierite crystals. Journal of Catalysis, 263(2), 258-265. doi:10.1016/j.jcat.2009.02.017Román-Leshkov, Y., Moliner, M., & Davis, M. E. (2010). Impact of Controlling the Site Distribution of Al Atoms on Catalytic Properties in Ferrierite-Type Zeolites. The Journal of Physical Chemistry C, 115(4), 1096-1102. doi:10.1021/jp106247gDi Iorio, J. R., & Gounder, R. (2016). Controlling the Isolation and Pairing of Aluminum in Chabazite Zeolites Using Mixtures of Organic and Inorganic Structure-Directing Agents. Chemistry of Materials, 28(7), 2236-2247. doi:10.1021/acs.chemmater.6b00181Di Iorio, J. R., Nimlos, C. T., & Gounder, R. (2017). Introducing Catalytic Diversity into Single-Site Chabazite Zeolites of Fixed Composition via Synthetic Control of Active Site Proximity. ACS Catalysis, 7(10), 6663-6674. doi:10.1021/acscatal.7b01273Liu, M., Yokoi, T., Yoshioka, M., Imai, H., Kondo, J. N., & Tatsumi, T. (2014). Differences in Al distribution and acidic properties between RTH-type zeolites synthesized with OSDAs and without OSDAs. Physical Chemistry Chemical Physics, 16(9), 4155. doi:10.1039/c3cp54297aDedecek, J., Balgová, V., Pashkova, V., Klein, P., & Wichterlová, B. (2012). Synthesis of ZSM-5 Zeolites with Defined Distribution of Al Atoms in the Framework and Multinuclear MAS NMR Analysis of the Control of Al Distribution. Chemistry of Materials, 24(16), 3231-3239. doi:10.1021/cm301629aPashkova, V., Klein, P., Dedecek, J., Tokarová, V., & Wichterlová, B. (2015). Incorporation of Al at ZSM-5 hydrothermal synthesis. Tuning of Al pairs in the framework. Microporous and Mesoporous Materials, 202, 138-146. doi:10.1016/j.micromeso.2014.09.056Yokoi, T., Mochizuki, H., Namba, S., Kondo, J. N., & Tatsumi, T. (2015). Control of the Al Distribution in the Framework of ZSM-5 Zeolite and Its Evaluation by Solid-State NMR Technique and Catalytic Properties. The Journal of Physical Chemistry C, 119(27), 15303-15315. doi:10.1021/acs.jpcc.5b03289Liang, T., Chen, J., Qin, Z., Li, J., Wang, P., Wang, S., … Wang, J. (2016). Conversion of Methanol to Olefins over H-ZSM-5 Zeolite: Reaction Pathway Is Related to the Framework Aluminum Siting. ACS Catalysis, 6(11), 7311-7325. doi:10.1021/acscatal.6b01771Pashkova, V., Sklenak, S., Klein, P., Urbanova, M., & Dědeček, J. (2016). Location of Framework Al Atoms in the Channels of ZSM-5: Effect of the (Hydrothermal) Synthesis. Chemistry - A European Journal, 22(12), 3937-3941. doi:10.1002/chem.201503758Yokoi, T., Mochizuki, H., Biligetu, T., Wang, Y., & Tatsumi, T. (2017). Unique Al Distribution in the MFI Framework and Its Impact on Catalytic Properties. Chemistry Letters, 46(6), 798-800. doi:10.1246/cl.170156Sklenak, S., Dědeček, J., Li, C., Wichterlová, B., Gábová, V., Sierka, M., & Sauer, J. (2007). Aluminum Siting in Silicon-Rich Zeolite Frameworks: A Combined High-Resolution27Al NMR Spectroscopy and Quantum Mechanics / Molecular Mechanics Study of ZSM-5. Angewandte Chemie International Edition, 46(38), 7286-7289. doi:10.1002/anie.200702628Sklenak, S., Dědeček, J., Li, C., Wichterlová, B., Gábová, V., Sierka, M., & Sauer, J. (2009). Aluminium siting in the ZSM-5 framework by combination of high resolution 27Al NMR and DFT/MM calculations. Phys. Chem. Chem. Phys., 11(8), 1237-1247. doi:10.1039/b807755jDědeček, J., Sobalík, Z., & Wichterlová, B. (2012). Siting and Distribution of Framework Aluminium Atoms in Silicon-Rich Zeolites and Impact on Catalysis. Catalysis Reviews, 54(2), 135-223. doi:10.1080/01614940.2012.632662Wang, S., Wei, Z., Chen, Y., Qin, Z., Ma, H., Dong, M., … Wang, J. (2015). Methanol to Olefins over H-MCM-22 Zeolite: Theoretical Study on the Catalytic Roles of Various Pores. ACS Catalysis, 5(2), 1131-1144. doi:10.1021/cs501232rChen, J., Liang, T., Li, J., Wang, S., Qin, Z., Wang, P., … Wang, J. (2016). Regulation of Framework Aluminum Siting and Acid Distribution in H-MCM-22 by Boron Incorporation and Its Effect on the Catalytic Performance in Methanol to Hydrocarbons. ACS Catalysis, 6(4), 2299-2313. doi:10.1021/acscatal.5b02862Zhu, Q., Kondo, J. N., Yokoi, T., Setoyama, T., Yamaguchi, M., Takewaki, T., … Tatsumi, T. (2011). The influence of acidities of boron- and aluminium-containing MFI zeolites on co-reaction of methanol and ethene. Physical Chemistry Chemical Physics, 13(32), 14598. doi:10.1039/c1cp20338jYang, Y., Sun, C., Du, J., Yue, Y., Hua, W., Zhang, C., … Xu, H. (2012). The synthesis of endurable B–Al–ZSM-5 catalysts with tunable acidity for methanol to propylene reaction. Catalysis Communications, 24, 44-47. doi:10.1016/j.catcom.2012.03.013Hu, Z., Zhang, H., Wang, L., Zhang, H., Zhang, Y., Xu, H., … Tang, Y. (2014). Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction. Catal. Sci. Technol., 4(9), 2891-2895. doi:10.1039/c4cy00376dYaripour, F., Shariatinia, Z., Sahebdelfar, S., & Irandoukht, A. (2015). Effect of boron incorporation on the structure, products selectivities and lifetime of H-ZSM-5 nanocatalyst designed for application in methanol-to-olefins (MTO) reaction. Microporous and Mesoporous Materials, 203, 41-53. doi:10.1016/j.micromeso.2014.10.024Nachtigallová, D., Nachtigall, P., Sierka, M., & Sauer, J. (1999). Coordination and siting of Cu+ ions in ZSM-5: A combined quantum mechanics/interatomic potential function study. Physical Chemistry Chemical Physics, 1(8), 2019-2026. doi:10.1039/a900214fSchröder, K.-P., Sauer, J., Leslie, M., & A.Catlow, C. R. (1992). Siting of AI and bridging hydroxyl groups in ZSM-5: A computer simulation study. Zeolites, 12(1), 20-23. doi:10.1016/0144-2449(92)90004-9Schmidt, J. E., Fu, D., Deem, M. W., & Weckhuysen, B. M. (2016). Template–Framework Interactions in Tetraethylammonium‐Directed Zeolite Synthesis. Angewandte Chemie International Edition, 55(52), 16044-16048. doi:10.1002/anie.201609053Dědeček, J., Kaucký, D., Wichterlová, B., & Gonsiorová, O. (2002). Co2+ions as probes of Al distribution in the framework of zeolites. ZSM-5 study. Phys. Chem. Chem. Phys., 4(21), 5406-5413. doi:10.1039/b203966bBlay, V., Miguel, P. J., & Corma, A. (2017). Theta-1 zeolite catalyst for increasing the yield of propene when cracking olefins and its potential integration with an olefin metathesis unit. Catalysis Science & Technology, 7(24), 5847-5859. doi:10.1039/c7cy01502jSun, X., Mueller, S., Shi, H., Haller, G. L., Sanchez-Sanchez, M., van Veen, A. C., & Lercher, J. A. (2014). On the impact of co-feeding aromatics and olefins for the methanol-to-olefins reaction on HZSM-5. Journal of Catalysis, 314, 21-31. doi:10.1016/j.jcat.2014.03.013Teketel, S., Svelle, S., Lillerud, K.-P., & Olsbye, U. (2009). Shape-Selective Conversion of Methanol to Hydrocarbons Over 10-Ring Unidirectional-Channel Acidic H-ZSM-22. ChemCatChem, 1(1), 78-81. doi:10.1002/cctc.200900057Teketel, S., Skistad, W., Benard, S., Olsbye, U., Lillerud, K. P., Beato, P., & Svelle, S. (2011). Shape Selectivity in the Conversion of Methanol to Hydrocarbons: The Catalytic Performance of One-Dimensional 10-Ring Zeolites: ZSM-22, ZSM-23, ZSM-48, and EU-1. ACS Catalysis, 2(1), 26-37. doi:10.1021/cs200517
    corecore