1,761 research outputs found

    Ion mobility-mass spectrometry studies of organic and organometallic complexes and reaction monitoring

    Get PDF
    Ion mobility (IM) spectrometry is a gas-phase electrophoretic technique in which ions are separated on the basis of their relative mobility in the presence of a weak electric field gradient and a buffer gas. Ion mobility-mass spectrometry (IM-MS) has the capability of separating ions based on m/z, size and shape, providing additional structural information compared to using mass spectrometry on its own. In this thesis, IM-MS has been used to investigate organic and organometallic complexes and identify reactants, intermediates and products in reaction mixtures. Collision cross sections (CCS) have been measured for three salen ligands, and their complexes with copper and zinc using travelling-wave ion mobility-mass spectrometry (TWIMS) and drift tube ion mobility-mass spectrometry (DTIMS), allowing a comparative size evaluation of the ligands and complexes. CCS measurements using TWIMS were determined using peptide and TAAH calibration standards with good intra-day and inter-day reproducibility. TWIMS measurements gave significantly larger CCS than DTIMS derived data in helium, indicating that the choice of calibration standards is important in ensuring the accuracy of TWIMS derived CCS measurements. The CCS data obtained from IM-MS measurements have been compared to CCS values obtained from X-ray coordinates and modelled structures. The analysis of small organic and organometallic molecules has been extended to investigations of the potential of IM-MS for reaction monitoring and structural studies of the components of catalytic cycles. Reaction mixtures of an organocatalysed Diels-Alder cycloaddition reaction have been monitored using IM-MS and high-field asymmetric waveform ion mobility-mass spectrometry (FAIMS-MS). Reactant, product, catalyst and reaction intermediates, including an intermediate not previously detected, were identified and the catalyst and intermediates monitored over time. An organometallic catalytic cycle using a palladium catalyst has been analysed using IM-MS and the CCS of reactants, intermediates and products have been measured and compared to theoretical CCS calculations. Good agreement was observed between measured and calculated data. Species not amenable to electrospray ionisation were covalently bound to an ionisable tag containing a quaternary ammonium ion allowing the tagged molecules to be detected by IM-MS

    Clinical Significance of Manuka and Medical-Grade Honey for Antibiotic-Resistant Infections: A Systematic Review

    Get PDF
    Antimicrobial resistance is an ever-increasing global issue that has the potential to overtake cancer as the leading cause of death worldwide by 2050. With the passing of the “golden age” of antibiotic discovery, identifying alternative treatments to commonly used antimicrobials is more important than ever. Honey has been used as a topical wound treatment for millennia and more recently has been formulated into a series of medical-grade honeys for use primarily for wound and burn treatment. In this systematic review, we examined the effectiveness of differing honeys as an antimicrobial treatment against a variety of multidrug-resistant (MDR) bacterial species. We analysed 16 original research articles that included a total of 18 different types of honey against 32 different bacterial species, including numerous MDR strains. We identified that Surgihoney was the most effective honey, displaying minimum inhibitory concentrations as low as 0.1% (w/v); however, all honeys reviewed showed a high efficacy against most bacterial species analysed. Importantly, the MDR status of each bacterial strain had no impact on the susceptibility of the organism to honey. Hence, the use of honey as an antimicrobial therapy should be considered as an alternative approach for the treatment of antibiotic-resistant infections

    Multiple endothelial cells constitute the tip of developing blood vessels and polarize to promote lumen formation

    Get PDF
    Blood vessel polarization in the apical-basal axis is important for directed secretion of proteins and lumen formation; yet, when and how polarization occurs in the context of angiogenic sprouting is not well understood. Here, we describe a novel topology for endothelial cells at the tip of angiogenic sprouts in several mammalian vascular beds. Two cells that extend filopodia and have significant overlap in space and time were present at vessel tips, both in vitro and in vivo. The cell overlap is more extensive than predicted for tip cell switching, and it sets up a longitudinal cell-cell border that is a site of apical polarization and lumen formation, presumably via a cord-hollowing mechanism. The extent of cell overlap at the tip is reduced in mice lacking aPKCζ, and this is accompanied by reduced distal extension of both the apical border and patent lumens. Thus, at least two polarized cells occupy the distal tip of blood vessel sprouts, and topology, polarization and lumenization along the longitudinal border of these cells are influenced by aPKCζ

    Magnetic resonance investigation into the mechanisms involved in the development of high-altitude cerebral edema

    Get PDF
    Rapid ascent to high altitude commonly results in acute mountain sickness, and on occasion potentially fatal high-altitude cerebral edema. The exact pathophysiological mechanisms behind these syndromes remain to be determined. We report a study in which 12 subjects were exposed to a FiO2 = 0.12 for 22 h and underwent serial magnetic resonance imaging sequences to enable measurement of middle cerebral artery velocity, flow and diameter, and brain parenchymal, cerebrospinal fluid and cerebral venous volumes. Ten subjects completed 22 h and most developed symptoms of acute mountain sickness (mean Lake Louise Score 5.4; p < 0.001 vs. baseline). Cerebral oxygen delivery was maintained by an increase in middle cerebral artery velocity and diameter (first 6 h). There appeared to be venocompression at the level of the small, deep cerebral veins (116 cm3 at 2 h to 97 cm3 at 22 h; p < 0.05). Brain white matter volume increased over the 22-h period (574 ml to 587 ml; p < 0.001) and correlated with cumulative Lake Louise scores at 22 h (p < 0.05). We conclude that cerebral oxygen delivery was maintained by increased arterial inflow and this preceded the development of cerebral edema. Venous outflow restriction appeared to play a contributory role in the formation of cerebral edema, a novel feature that has not been observed previously

    Enhanced stability and local structure in biologically relevant amorphous materials containing pyrophosphate

    Get PDF
    There is increasing evidence that amorphous inorganic materials play a key role in biomineralisation in many organisms, however the inherent instability of synthetic analogues in the absence of the complex in vivo matrix limits their study and clinical exploitation. To address this, we report here an approach that enhances long-term stability to >1 year of biologically relevant amorphous metal phosphates, in the absence of any complex stabilisers, by utilising pyrophosphates (P2O7 4-); species themselves ubiquitous in vivo. Ambient temperature precipitation reactions were employed to synthesise amorphous Ca2P2O7.nH2O and Sr2P2O7.nH2O (3.8 < n < 4.2) and their stability and structure were investigated. Pair distribution functions (PDF) derived from synchrotron X-ray data indicated a lack of structural order beyond ~8 A° in both phases, with this local order found to resemble crystalline analogues. Further studies, including 1H and 31P solid state NMR, suggest the unusually high stability of these purely inorganic amorphous phases is partly due to disorder in the P–O–P bond angles within the P2O7 units, which impede crystallization, and to water molecules, which are involved in H-bonds of various strengths within the structures and hamper the formation of an ordered network. In situ high temperature powder X-ray diffraction data indicated that the amorphous nature of both phases surprisingly persisted to ~450° C. Further NMR and TGA studies found that above ambient temperature some water molecules reacted with P2O7 anions, leading to the hydrolysis of some P–O–P linkages and the formation of HPO4 2- anions within the amorphous matrix. The latter anions then recombined into P2O7 ions at higher temperatures prior to crystallization. Together, these findings provide important new materials with unexplored potential for enzyme-assisted resorption and establish factors crucial to isolate further stable amorphous inorganic materials

    Buprenorphine versus dihydrocodeine for opiate detoxification in primary care: a randomised controlled trial

    Get PDF
    Background Many drug users present to primary care requesting detoxification from illicit opiates. There are a number of detoxification agents but no recommended drug of choice. The purpose of this study is to compare buprenorphine with dihydrocodeine for detoxification from illicit opiates in primary care. Methods Open label randomised controlled trial in NHS Primary Care (General Practices), Leeds, UK. Sixty consenting adults using illicit opiates received either daily sublingual buprenorphine or daily oral dihydrocodeine. Reducing regimens for both interventions were at the discretion of prescribing doctor within a standard regimen of not more than 15 days. Primary outcome was abstinence from illicit opiates at final prescription as indicated by a urine sample. Secondary outcomes during detoxification period and at three and six months post detoxification were recorded. Results Only 23% completed the prescribed course of detoxification medication and gave a urine sample on collection of their final prescription. Risk of non-completion of detoxification was reduced if allocated buprenorphine (68% vs 88%, RR 0.58 CI 0.35–0.96, p = 0.065). A higher proportion of people allocated to buprenorphine provided a clean urine sample compared with those who received dihydrocodeine (21% vs 3%, RR 2.06 CI 1.33–3.21, p = 0.028). People allocated to buprenorphine had fewer visits to professional carers during detoxification and more were abstinent at three months (10 vs 4, RR 1.55 CI 0.96–2.52) and six months post detoxification (7 vs 3, RR 1.45 CI 0.84–2.49). Conclusion Informative randomised trials evaluating routine care within the primary care setting are possible amongst drug using populations. This small study generates unique data on commonly used treatment regimens

    Structural studies of metal ligand complexes by ion mobility-mass spectrometry

    Get PDF
    Collision cross sections (CCS) have been measured for three salen ligands, and their complexes with copper and zinc using travelling-wave ion mobility-mass spectrometry (TWIMS) and drift tube ion mobility-mass spectrometry (DTIMS), allowing a comparative size evaluation of the ligands and complexes. CCS measurements using TWIMS were determined using peptide and TAAH calibration standards. TWIMS measurements gave significantly larger CCS than DTIMS in helium, by 9 % for TAAH standards and 3 % for peptide standards, indicating that the choice of calibration standards is important in ensuring the accuracy of TWIMS-derived CCS measurements. Repeatability data for TWIMS was obtained for inter- and intra-day studies with mean RSDs of 1. 1 % and 0. 7 %, respectively. The CCS data obtained from IM-MS measurements are compared to CCS values obtained via the projection approximation, the exact hard spheres method and the trajectory method from X-ray coordinates and modelled structures using density functional theory (DFT) based methods. © 2013 Springer-Verlag Berlin Heidelberg

    Flexible and scalable diagnostic filtering of genomic variants using G2P with Ensembl VEP.

    Get PDF
    We aimed to develop an efficient, flexible and scalable approach to diagnostic genome-wide sequence analysis of genetically heterogeneous clinical presentations. Here we present G2P ( www.ebi.ac.uk/gene2phenotype ) as an online system to establish, curate and distribute datasets for diagnostic variant filtering via association of allelic requirement and mutational consequence at a defined locus with phenotypic terms, confidence level and evidence links. An extension to Ensembl Variant Effect Predictor (VEP), VEP-G2P was used to filter both disease-associated and control whole exome sequence (WES) with Developmental Disorders G2P (G2PDD; 2044 entries). VEP-G2PDD shows a sensitivity/precision of 97.3%/33% for de novo and 81.6%/22.7% for inherited pathogenic genotypes respectively. Many of the missing genotypes are likely false-positive pathogenic assignments. The expected number and discriminative features of background genotypes are defined using control WES. Using only human genetic data VEP-G2P performs well compared to other freely-available diagnostic systems and future phenotypic matching capabilities should further enhance performance

    Endogenous production of IL-1B by breast cancer cells drives metastasis and colonisation of the bone microenvironment

    Get PDF
    Background: Breast cancer bone metastases are incurable highlighting the need for new therapeutic targets. After colonizing bone, breast cancer cells remain dormant, until signals from the microenvironment stimulate outgrowth into overt metastases. Here we show that endogenous production of IL-1B by tumor cells drives metastasis and growth in bone. Methods: Tumor/stromal IL-B and IL-1R1 expression was assessed in patient samples and effects of the IL-1R antagonist, Anakinra or the IL-1B antibody Canakinumab on tumor growth and spontaneous metastasis were measured in a humanized mouse model of breast cancer bone metastasis. Effects of tumor cell-derived IL-1B on bone colonisation and parameters associated with metastasis were measured in MDA-MB-231, MCF7 and T47D cells transfected with IL-1B/control. Results: In tissue samples from >1300 patients with stage II/III breast cancer, IL-1B in tumor cells correlated with relapse in bone (hazard ratio 1.85; 95% CI 1.05-3.26; P=0.02) and other sites (hazard ratio 2.09; 95% CI 1.26-3.48; P=0.0016). In a humanized model of spontaneous breast cancer metastasis to bone, Anakinra or Canakinumab reduced metastasis and reduced the number of tumor cells shed into the circulation. Production of IL-1B by tumor cells promoted EMT (altered E-Cadherin, N-Cadherin and G-Catenin), invasion, migration and bone colonisation. Contact between tumor and osteoblasts or bone marrow cells increased IL-1B secretion from all three cell types. IL-1B alone did not stimulate tumor cell proliferation. Instead, IL-1B caused expansion of the bone metastatic niche leading to tumor proliferation. Conclusion: Pharmacological inhibition of IL-1B has potential as a novel treatment for breast cancer metastasis
    corecore