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Flexible and scalable diagnostic filtering of genomic
variants using G2P with Ensembl VEP
Anja Thormann1,11, Mihail Halachev2,3,11, William McLaren1,11, David J. Moore3, Victoria Svinti 2,

Archie Campbell 4,5, Shona M. Kerr4, Marc Tischkowitz6, Sarah E. Hunt 1, Malcolm G. Dunlop 2,7,

Matthew E. Hurles8, Caroline F. Wright 9, Helen V. Firth6,8,12, Fiona Cunningham 1,12 &

David R. FitzPatrick 10,12

We aimed to develop an efficient, flexible and scalable approach to diagnostic genome-wide

sequence analysis of genetically heterogeneous clinical presentations. Here we present G2P

(www.ebi.ac.uk/gene2phenotype) as an online system to establish, curate and distribute

datasets for diagnostic variant filtering via association of allelic requirement and mutational

consequence at a defined locus with phenotypic terms, confidence level and evidence links.

An extension to Ensembl Variant Effect Predictor (VEP), VEP-G2P was used to filter both

disease-associated and control whole exome sequence (WES) with Developmental Disorders

G2P (G2PDD; 2044 entries). VEP-G2PDD shows a sensitivity/precision of 97.3%/33% for de

novo and 81.6%/22.7% for inherited pathogenic genotypes respectively. Many of the missing

genotypes are likely false-positive pathogenic assignments. The expected number and dis-

criminative features of background genotypes are defined using control WES. Using only

human genetic data VEP-G2P performs well compared to other freely-available diagnostic

systems and future phenotypic matching capabilities should further enhance performance.
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The analysis of genomic sequence and copy number is now
in widespread use as a first-line investigation in the diag-
nosis of Mendelian disease. In addition to an obvious role

in genetic counselling, diagnostic genetic testing can also help
avoid invasive procedures (e.g. muscle biopsy in Duchenne and
Becker muscular dystrophy1) and reduce the length of time
required to come to a definitive diagnosis (e.g. leukodystrophies2).
Such testing has historically been restricted to individuals with
distinctive clinical presentations and/or suggestive family histories,
which significantly increase the prior probability of specific genetic
pathology. However, it is now possible to perform comprehensive
analysis of the protein coding region (whole-exome sequencing
(WES)3–5) or the entirety of the human genome (whole-genome
sequencing (WGS)6,7) for clinical diagnostic purposes at reason-
able cost. Although this represents an exciting opportunity, the
number of variants passing any diagnostic filter is strongly cor-
related with total genomic space sampled. The more genetically
heterogenous a disease, the more causal genes are individually
implicated and hence the more variants are likely to become
diagnostic candidates. It is thus important to develop strategies
that can define the impact of increasing the number of variants on
false-positive and false-negative errors in diagnostic assignments;
both may result in significant harm through misdiagnosis and
missed diagnoses and certainly increase the workload for clinical
scientists and clinicians.

The diagnostic filtering of previously unclassified variants is
most commonly based on minor allele frequency (MAF) and
mutational consequence. The effectiveness of the former has been
revolutionized by the availability of data from the Exome
Aggregation Consortium (ExAC)8 and the Genome Aggregation
Database (gnomAD; http://gnomad.broadinstitute.org). These
resources provide access to technically robust variant calls from
diverse populations of known providence. There are many dif-
ferent publicly available tools for defining the consequence of an
individual variant call9. One of the most widely used is the
Ensembl Variant Effect Predictor (VEP)10. VEP predicts the effect
of each alternative allele on each overlapping transcript for a
variant and assigns Sequence Ontology11 terms to describe the
consequences. It can be run either online or using a locally
installed version of the program. VEP exploits the extensive and
regularly updated Ensembl datasets to provide the most com-
prehensive variant annotation possible in coding and non-coding
regions. It also supports extensibility through the ‘plugin’ system,
which allows custom methods to be easily added.

Automated variant annotation and filtering of WES data
using Ensembl VEP has been successfully applied in a geneti-
cally heterogeneous disease cohort by the Deciphering Devel-
opmental Disorders Study (DDD)12,13. The DDD Study has
recruited >13,400 individuals, with previously undiagnosed
severe and/or extreme developmental disorders (DD), from the
UK and the Republic of Ireland. The principal aim of the
project is to define the genetic architecture of DD using trio-
based WES analyses as the main analytical tool14. Important
secondary aims were to identify novel DD loci and develop
diagnostic approaches that could be translated into clinical
practice. To facilitate this, we developed a database of all known
causative DD loci (DDG2P), which captures the information
essential to allow facile, very high throughput filtering of var-
iant calls. This dataset has been used in each of the DDD
flagship papers12,13. The continual updating of DDG2P has
been one of the main drivers of the improvement in diagnostic
rates through iterative reporting of the same data15. The basic
architecture and processes used to populate DDG2P16 have
been adapted to be applicable to any clinical presentation that
has a reasonable prior probability of being caused by highly-
penetrant genotypes at a defined group of loci.

To expand from DD to other clinical presentations and to
create a system that could be maintained and updated by multiple
curators, we created the genotype-to-phenotype (G2P) web
application to hosts the DDG2P database and any similar
datasets.

Here we describe G2P, tailored to address the problem of robust,
efficient and flexible prioritization of genotypes identified from
NGS data to aid the diagnosis of genetic disease. As part of our G2P
system, we have developed a suite of tools and resources: (1) The
G2P portal/web application, which is freely available at https://
www.ebi.ac.uk/gene2phenotype/ for creation, curation and dis-
semination of G2P datasets; (2) G2P datasets, which formalize
collections of locus-genotype-mechanism-disease-evidence threads
(LGMDET), curated from the literature, and found to be implicated
in the cause of a specific disease or clinical presentation; (3) The
G2P extension to Ensembl VEP, which is freely available at https://
www.ebi.ac.uk/gene2phenotype/g2p_vep_plugin (VEP-G2P). VEP-
G2P utilizes the allelic requirement information from G2P datasets/
panels and leverages allele frequency data from public datasets such
as Genome Aggregation Database (gnomAD) together with the
predicted mutational consequence annotations from VEP to pro-
duce list of potentially causative genotype(s) given an individual’s
VCF file as an input. We assess the sensitivity and precision of
VEP-G2P in a large, well-characterized cohort of individuals with
severe developmental disorders. We also present an approach to
estimate the background noise—here used to describe the expected
number of variants surviving filtering in control populations—
associated with the application of any G2P dataset to genome-wide
sequencing data.

Results
Discriminative diagnostic indicators. To look for characteristics
that may discriminate diagnostic from background genomic
variants, we compared the VEP-G2P filtered output (Fig. 1) of
each panel applied to different WES cohorts (Table 1): The G2P
panel with its target disease cohort (i.e. VEP-G2PDD with DDD
cohort; VEP-G2PCancer with CRC cohort), a G2P panel with a
discrepant disease cohort (VEP-G2PDD with CRC cohort) and
both G2P panels with the controls (VEP-G2PDD with GS; VEP-
G2PCancer with GS). The ethical approval and consent procedures
governing the recruitment to the DDD Study allow diagnostic
analyses only for the identification of pertinent genetic results. It
specifically prohibits the intentional identification of incidental or
accidental findings, such as genotypes related to adult-onset
cancer susceptibility; for this reason, we did not apply filtering
using VEP-G2PCancer with the DDD cohort.

For VEP-G2PDD the proportion of single nucleotide variants
(SNVs) that survived filtering was 1 in 31.4 K in the DDD cohort
and 1:44.3 K in GS (Supplementary Table 4; p= 6.56E-13,
Fisher’s exact test). Filtering the CRC cohort using VEP-G2PDD

gave a similar proportion to the controls, 1 in 40.8 K
(Supplementary Table 4; p= 0.16, Fisher’s exact test, cf GS).
Comparing the results from the DDD cohort with GS controls
there is a significant excess of loss-of-function and missense
variants for monoallelic and biallelic genes. A higher proportion
of the surviving variants in monoallelic genes were missense
variants in GS compared to DDD (83.7% cf 64.9%) (Fig. 2a, b;
Supplementary Tables 5–7). The average number of surviving of
SNP and INDELs per sample was 3.59 (Standard Deviation [SD]
2.56) and 0.19 (SD 0.50), respectively, for DDD cohort and 2.05
(SD 1.51) and 0.09 (SD 0.40) for the control GS individuals
(Supplementary Table 4). This would suggest that at least half of
the variants in the disease based cohort represent background
noise (as defined above in Introduction). The missense variants
that survived filtering in DDD had a higher proportion with a
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CADD score >30 compared to GS (11.4% cf 7.6%;) (Fig. 2d),
suggesting they are more likely to be deleterious. The mean MAF
of all missense variants in GS was 1.68x higher than in DDD for
monoallelic genes and 1.24x for biallelic genes. For loss-of-
function variants the MAF was 2.0–3.5x higher in GS. 115/454
(25.3%) monoallelic DDG2P genes reported had a higher
proportion of individuals with variants in GS compared to the
DDD WES (Supplementary Data File 3) while 224/454 (49.3%)
had no reported variants in GS. The respective proportions for
biallelic DDG2P genes are 63/676 (9.3%) and 4/676 (0.6%)
(Supplementary Data File 3).

Using G2PCancer in the CRC cohort compared to GS revealed
no significant enrichment in any class of variant (Fig. 2a, b).
However, monoallelic G2PCancer LGMDET stop-gained variants
in GS had a MAF 2.67x higher than those in CRC (Supplemen-
tary Tables 8–10). For biallelic G2PCancer LGMDET, no variants
survived filtering in GS with 9 reported in the CRC WES
(Supplementary Table 10). 25/61 of all genes reported by the
VEP- G2P plugin were found in a higher proportion of
individuals in GS than CRC with 22/61 being exclusively reported
in CRC (Supplementary Data File 4).

Using all variant surviving VEP-G2PDD filtering there was a
mean of 3.8 variants per DDD proband (3.59 SNV and 0.19

INDEL; Supplementary Table 4) compared to 2.14 variants per
individual in the GS controls (2.05 SNV and 0.09 INDEL;
Supplementary Table 4). The distribution of the numbers of
variants reported per individual is shifted to the right in DDD
probands compared to individuals in GS (Fig. 2c). With a
significantly smaller proportion of DDD probands have no
variants reported compared to both GS individuals (p= 7.9e-09)
and CRC probands (p= 2.3e-12, Fisher’s exact test, see Fig. 2c
legend). However, these differences could, at least in part, be
systematic and reflect the alignment/variant calling, read depth or
targeted pull-down used in each analysis (Table 2) rather than
any underlying differences in biology of the populations. Analysis
of larger control cohorts that have been processed using the same
pipelines as the case cohort and the variants jointly called will be
required to determine if these differences are real.

Sensitivity and precision for DDD causative variants. Using
data from the first 4293 trio WES in the DDD study the over-
representation of plausibly deleterious de novo variants in 94
different genes achieved genome-wide significance12. There was a
total of 804 likely causative de novo variants in these 94 genes
that were reported to referring clinicians. Proband-only analysis

Locus Gene or genomic interval

Genotype Monoallelic/biallelic/hemizygous etc

Mechanism Loss-of-function/activating/dominant negative etc

Disease entity Syndrome name + organ specificity coding + set of HPO terms

Evidence Set of PMIDs + ClinVar pathogenic/likely pathogenic variants

a

https://www.ebi.ac.uk/gene2phenotype

b

VEP & VEP-G2P plugin

Whole exome/genome sequence/targeted NGS
VCF file from proband-only affected individuals

Consequence for each transcript
minor allele frequency (MAF)
SIFT, PolyPhen2, CADD etc

other annotations e.g. ClinVar

G
2P

 th
re

ad

n.b. a single gene may have multiple distinct LGMDE threads

Clinical review
phenotype match

validation
segregation/inheritance

Expected background in population unselected for disease 

Clinical genetics informatic “threads” in G2P G2P datasets for use in diagnostic filtering

G2P datasets with VEP-G2P plugin
for diagnostic filteing

G2P datasets with VEP-G2P plugin
to quantify diagnostic “noise”

d

Whole exome/genome sequence/targeted NGS
VCF file from control cohort 

Compare with disease cohort output to identify
discriminating features

Calculate & compare
sensitivity
precision

c

LGMDET-specific filters for
consequence & MAF

Cancer
(123 threads)

All G2P threads

Eye
(779 threads provisional)

Assign plausible genotypes
of likely deleterious variants

L = NIPBL 
G = monoallelic
M = loss-of-function
D = Cornelia de Lange syndrome
E = PMID 15146185, 15146186 etc.

L = MUTYH
G = biallelic
M = loss-of-function
D = multiple colorectal adenomas
E = PMID 11818965, 12853198 etc.

Developmental disorders
(2044 threads)

User-defined dataset

L =  MAB21L2
G = monoallelic
M = activating
D = coloboma plus
E = PMID 24906020

VEP & VEP-G2P plugin

Fig. 1 Summary of LGMDET structure and application in diagnostic filtering. a summarizes the components of a LGMDET thread. Each locus-genotype-
mechanism-disease-evidence thread (LGMDET) associates an allelic requirement and a mutational consequence at a defined locus with a disease entity
and a confidence level and evidence links. The publicly available G2PDD and G2PCancer data can be searched or downloaded on the website (https://www.
ebi.ac.uk/gene2phenotype). b gives examples for LGMDE threads from curated datasets. In addition to the publicly available G2PDD and G2PCancer data,
G2PEye is actively curated and will be publicly available soon. Access to the curation system can be requested for the creation of user-defined datasets.
c summarizes the workflow for diagnostic filtering. The VCF files derived from the next-generation sequence data are passed to VEP which uses Ensembl
annotation data to compute and annotate the consequence of each variant. The VEP-G2P plugin runs as an additional step of the VEP analysis. It uses the
results of VEP’s computations and annotations together with the knowledge from the LGMDETs to filter the variants from the patients input VCF file. The
plugin results, plausible genotypes of likely deleterious variants, are returned together with the VEP output file for clinical review. d lastly, the combined
analysis of running VEP and VEP-G2P is repeated for a control cohort. The comparison between results from a population unselected for disease with the
results from a disease cohort yields the expected background to quantify diagnostic noise and to identify discriminating features between the two cohorts
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using VEP-G2P with DDG2P LGMDETs (VEP-G2PDD) suc-
cessfully identified 782 (97.3%) of the reported variants. These
782 variants were amongst the 2342 variants that survived fil-
tering, giving a precision of 33.4% and a false-positive rate of
66.6%. Of the 22 de novo mutations that were missed, the most
common reason was that they had a MAF that was higher than
the 1:10,000 cut-off used in our monoallelic filtering (Fig. 3a).

To assess the performance of VEP-G2PDD in identifying
inherited causative variants, we used the recent comprehensive
re-analysis of known diagnoses in the first 1133 trios in DDD16

excluding reported de novo mutations. This method successfully
identified 124 of the 152 known diagnostic inherited variants,
giving a sensitivity of 81.6% with a precision of 22.7%. The
reasons for the missed diagnoses were similar to those for de novo
mutations (Fig. 3b).

Receiver operating characteristics (ROC) analysis has proven to
be a highly effective method of comparing the performance of
diagnostic tests. The most common form of ROC space analysis
uses a continuous variable to create a ROC curve—the larger the
area under this curve (AUC) the better the test. We wished to
explore how VEP-G2PDD performed in ROC space. We therefore
chose to use the set of 1700 de novo mutations which occurred in
DDD probands within genes that were monoallelic and
reportable in G2PDD. The only continuous variable that is
available to us was the MAF and given that our filter cut-off is
1:10,000 and many variants are unique (having no computation-
ally useful MAF) the area of ROC space that can be interrogated
using this approach is very small. However we can calculate the
lower bound for AUC of 0.964 using the simple approach
developed for binary tests17 ([sensitivity+ specificity]/2) using
VEP-G2P default parameters.

It has been noted recently that ROC curve analysis can be
misleading when using binary classifiers18 and that precision-

recall curves may be used in conjunction with ROC curves to
provide a more realistic picture of the tests under investigation.
The precision-recall plot using the same data as that used in the
ROC analysis does indeed show the cost of increasing sensitivity
with respect to precision (Fig. 3b).

Comparisons with freely available variant filtering systems. We
compared the performance of VEP-G2P with four other tools free
for academic use (Fig. 4); AMELIE, DIVINE, VVP and GAVIN
(see Online Resources). The input for each of these tests were
WES-derived data from three non-overlapping sets of 100 indi-
viduals who were randomly chosen as outlined above. In addition
AMELIE and DIVINE use a list of HPO terms for each indivi-
dual. DIVINE, VVP and GAVIN were installed locally; AMELIE
analysis used the program website (see online resources).

All of the systems achieved reasonable sensitivity with DIVINE
ranking top (Fig. 4a). The precision measures were, in contrast,
much more variable with VEP-G2P and AMELIE scoring much
better than the other systems. The high precision seen for VEP-
G2P is likely to be explained by the explicit statement of the allelic
requirement per each gene (monoallelic vs. biallelic) and
restricting analysis to ~2000 LGMET in G2PDD. Although the
median ranks of the causative gene for the two tools are very
similar, AMELIE exhibits longer tail resulting in mean rank for
Set A of 5.4 genes and mean rank of 4.0 for Set B, compared to
VEP-G2P mean ranks of 2.8 and 2.8, respectively. There were no
cases of AMELIE finding the causative gene when VEP-G2P
failed to do so.

Discussion
DDG2P was developed to identify reportable, plausibly causative
genotypes in known developmental disorders in DDD Study

Table 1 January 2018 freeze of G2P datasets

G2P-DD number G2P-DD percent G2P-cancer number G2P-cancer percent

Reportablea LGMDET 2044 100 123 100.0
Different reportable genes 1517 NA 92 NA

LGMDET confidence
Confirmed 1551 75.9 114 92.7
Probable 403 19.7 9 7.3
Possibleb [257] NA [5] NA
RD and IF 90 4.4 0 0.0

LGMDET allelic requirementc

Monoallelic 701 34.3 80 65.0
Biallelic 1123 54.9 38 30.9
Digenic 2 0.1 0
Imprinted 7 0.3 0
Mitochondrial 1 0.0 0
Mosaic 12 0.6 0
Hemizygous 166 8.1 2 1.6
X-linked dominant and X-linked over-dominance 32 1.6 0
Uncertain 0 3 2.4

LGMDET mutation consequence
Loss-of-function 1446 70.7 107 87.0
Activating 114 5.6 0
Dominant negative 53 2.6 0
5’ or 3’UTR mutation 5 0.2 0
Cis-regulatory or promotor mutation 5 0.2 0
Increased gene dosage 3 0.1 0
All missense/in-frame 287 14.0 6 4.9
Uncertain 131 6.4 10 8.1

aReportable genes are those with a LGMDET confidence level categorized as probable, confirmed or relevant and incidental.
bPossible LGMDETs (see Supplementary Table 1 for definitions) are not reported in the pipelines used here.
cAn individual gene may have more than one reportable LGMDET e.g. monoallelic/activating and biallelic/loss-of-function
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probands13. Our primary aim was to evaluate LGMDETs—the key
architectural feature of DDG2P data—as a scalable and general-
izable approach for diagnostic analysis of clinical presentations in
which affected individuals may have one of many different Men-
delian disorders using only human genetic data. First, we developed
the gene2phenotype curation system (https://www.ebi.ac.uk/
gene2phenotype/) to facilitate the creation and review of
LGMDETs in different datasets. To maintain consistency and
clarity of purpose in G2P datasets, to date, we have used only two
highly-motivated expert clinician curators to develop and maintain

each G2P dataset. This approach requires a significant investment
of time and effort and is difficult to scale. However, data mining
tools (Pubtator, ClinVar etc) are now being incorporated into the
online system to minimize the human resource requirements.
Additional curation tools will become increasingly important as the
diversity of journals reporting novel gene-disease associations
continues to widen. Here we present G2PDD and G2PCancer as first
two publicly accessible LGMDET sets.

Our primary aim is also dependent on the ability to implement
these LGMDET sets in clinical research diagnostic filtering. For
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this we chose to develop the VEP-G2P plugin as both G2P and
VEP are hosted at EMBL-EBI and VEP is widely used in research
and clinical practice. The VEP-G2P plugin identifies genotypes
that fulfil the MAF filters and LGMDET requirements (that is,
genotypes with the required mutational consequence and allelic
requirement at a locus) with the aim of only reporting likely
causative genotypes. Taking the genotypes observed in the pro-
band into account when filtering—rather than reporting the full
list of all plausibly pathogenic variants—leaves only a small
number of loci (mean < 4), minimizing the time required for
review of each case by clinicians and clinical scientists. For spe-
cific loci reporting genotypes also masks incidental findings, e.g.
only homozygous or two different heterozygous (possible com-
pound heterozygous) likely pathogenic variants in BRCA2 will be
reported in DDG2P as a cause of Fanconi anemia.

The speed and ease of VEP-G2P plugin use has allowed us to
assess the expected background output from each G2P dataset
against a population ascertained dataset. This required access to
WES data from individuals that have not been selected for any
specific disease or clinical problem and we have used these
individuals as our control group. Our analysis suggests that at
least half of the variants surviving the filtering process are likely to
be the result of background population genome variation rather
than specifically relevant to this disease being analyzed. Here we
used Generation Scotland, which is relatively small in size but in
the near future, much larger, unselected WES and WGS control
datasets will be available from UK Biobank19 and these will

enable more accurate definition of the characteristics of the var-
iants that constitute the background noise. We consider this type
of analysis to be a very important sanity check in genetic diag-
nostic analysis. We do not wish to imply that the GS variants
represent pathogenic alleles as they include all rare missense
variants, regardless of their SIFT/PolyPhen predicted effect. Such
variants will be more commonly encountered when analysing
individuals from populations that are under-represented in the
gnomAD database.

We have made it very simple for any panel of any size to
be converted to be compatible with VEP-G2P plugin. For
example PanelApp (https://panelapp.genomicsengland.co.uk) is a
gene panel development system created by Genomes England for
the 100,000 Genomes initiative (https://www.genomicsengland.
co.uk). PanelApp currently hosts 231 gene panels focused on
specific clinical diseases (e.g. Charcot Marie Tooth syndrome) or
on groups of phenotypically-related diseases (e.g. Hereditary
Ataxias). These gene panels were mostly initiated using panels in
current clinical use with subsequent crowdsourced curation. We
have extended VEP-G2P to optionally support the PanelApp
export format.

No matter what their origin, any diagnostic gene panel-based
analysis should show a clear difference in the output when
comparing control populations with individuals affected with the
relevant disease. VEP-G2P makes such analyses very simple to
perform and analyse using a range of MAF and variant con-
sequence filters to optimise case:control discrimination. It is our

Fig. 2 Diagnostically discriminative VEP-G2P disease-specific output. VEP-G2P analysis of three independent WES cohorts; DDD (n= 7357), CRC (n=
517) and GS (n= 315). a Odds ratios for samples carrying at least one valid G2P variant (passing the G2P criteria and on a canonical transcript) in 454
unique G2PDD monoallelic genes: DDD vs GS (red) and CRC vs GS (black); two-tail Fisher’s Exact Test: *p-value≤ 5 × 10-2, **p-value≤ 5 × 10-3, ***p-
value≤ 5 × 10-6, n.s not significant; considering only missense variants where SIFT and PolyPhen agree deleterious/damaging. b Odds ratios for samples
carrying at least one valid G2P variant in 950 different G2PDD biallelic genes. No stop_lost and inframe_insertion variants were found in the GS cohort and
few in DDD or CRC (p-value > 5 × 10−2). Error bars= 95% confidence intervals (CI) in a and b. c Proportion of individuals in the three cohorts (y-axis)
carrying a particular number of LOF and missense (regardless of their SIFT/PolyPhen status and CADD score) variants reported by VEP-G2PDD (x-axis).
The proportion of DDD individuals for which no VEP-G2PDD hit is found is significantly lower compared to CRC and GS cohorts, both for monoallelic
(p-values for two-tail Fisher’s Exact Test comparing number of individuals for which no variants is found to those for which at least one variant is found:
DDD vs GS= 7.9e-09, DDD vs CRC= 2.3e-12, CRC vs GS= 0.93) and biallelic genes (DDD vs GS= 1.5e-10, DDD vs CRC= 1.5e-11, CRC vs GS= 0.39).
DDD (n= 7357 individuals), CRC (n= 517), GS (n= 315). d DDD cohort is significantly enriched for unique missense variants with CADD > 30 in G2PDD

genes (top) compared to GS (p-value two-tail Fisher’s Exact Test= 0.005); with no significant difference between DDD and CRC (p-value= 0.17) and CRC
and GS (p-value= 0.16). There is no significant difference for the proportion of unique missense variants with CADD > 30 in the CRC and GS cohorts in
G2PCancer genes (bottom, p-value= 1.0)

Table 2 Cohort information and technical features WES

DDD (n= 7357)a CRC (n= 517) GS (n= 315)

Capture kit Agilent Human All-Exon V3 or V5 Plus with
custom ELID C0338371

Illumina TruSeq Exome Enrichment kit Illumina TruSeq Exome Enrichment kit

Sequencing
platform

Illlumina HiSeq Illumina HiSeq 2000 and 2500 Illumina HiSeq 2000 and 2500

Alignment bwa (0.5.9) bwa (0.5.9) bwa (0.5.9)
Variant calling GATK (3.1.1) GATK (3.4) GATK (3.4)

Indel realignment, BQSR Indel realignment, BQSR Indel realignment, BQSR
HaplotypeCaller (run in multisample calling
mode using the complete dataset)

HaplotypeCaller (per sample) HaplotypeCaller (per sample)

GenotypeGVCFs (joint genotyping
across all samples on TruSeq regions+
50 bp padding)

GenotypeGVCFs (joint genotyping
across all samples on TruSeq regions+
50 bp padding)

Relatedness After excluding poor quality samples,
selected randomly one affected proband per
family (using the PED file)

Unrelated First-degree relatives excluded (based
on computed relationship coefficients)

Male:female ratio 1.36 1.11 0.73
Median age 7.9 years 63 years 52 years

aDDD details are based on info in the Methods section of ref. 13
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opinion that such analyses should be routinely performed prior to
clinical or research implementation. If any panel is found to have
poor discriminative power between cases and controls it requires
reassessment and/or revision prior to implementation for clinical
or research use. Such analysis will be particularly useful to
identify genes with a very restricted repertoire of disease-
associated variants and a high background of rare high-impact
variants. Such loci may be better analyzed using a trusted
variant list.

Determining the diagnostically-useful completeness of any
panel in any curation system is a major challenge; requiring
balancing all possible associations of a set of comparable geno-
types with the clinical presentation against the confidence that the
association is causative rather than coincidental. We have found
both the statistical genomics analysis (identifying loci achieving
genome-wide significance under different genetic models) and
clinician case updates within DDD very helpful for DDG2P
curation. However, it will be important to establish robust
methods to quantitate this feature in any clinical presentation.
We were glad to see that each of the freely available variant
filtering systems each perform with high sensitivity. However, the

precision of the different systems varied very widely, which has
significant implication for the clinical scientist time required to
parse the output.

Family-trio WES data are hugely valuable for determining the
de novo status of variants in monoallelic genes, as well as
establishing the phase of potential compound heterozygous var-
iants in biallelic genes. In the absence of trio data, there is a
particular problem associated with accurate calling of genotypes
in ultra-rare biallelic disorders as evidenced by the expected high
rate of false positives, which is the result of an inability to dif-
ferentiate variants in cis and in trans using VEP-G2PDD for
proband-only analyses, where it is not possible to determine the
phase of most variants detected within a single gene. This will be
helped by long read technologies and deeper, more comprehen-
sive data on stable haplotypes in human populations. It is
interesting that a significant proportion of the missed diagnoses
in our de novo analysis were due to variants previously being
assigned as causative which, on current analyses, show implau-
sibly high MAF values.

Finally, we would like to emphasize that the VEP-G2P plugin
should be considered a system for experts and it is not designed
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for use by laboratories or clinical services who do not have
competence and experience in a multi-disciplinary approach to
the diagnosis of rare genetic disease involving both scientists and
clinicians. Casual use of this system could result in misdiagnosis
and subsequent significant mismanagement of ‘affected’
individuals.

Methods
G2P dataset structure and availability. The structure of G2P datasets is based on
that of the DDG2P diagnostic tool, which has been previously described16 (Fig. 1a;
Supplementary methods). Each dataset is focused on a disease grouping or defined
category of clinical presentation that is of relevance to the clinical diagnosis of
Mendelian disease. Each entry in each dataset links a gene or locus, via a disease
mechanism, to a disease. A disease mechanism is defined as both an allelic
requirement (mode of inheritance, for example biallelic or monoallelic) and a
mutation consequence (mode of pathogenicity, for example activating or loss-of
function). A confidence attribute—confirmed, probable or possible—is also
assigned to indicate how likely it is that the gene is implicated in the cause of
disease. Confirmed and probable categories are considered reportable for clinical
diagnosis, the possible category is not. A fourth category (both RD and IF) has been
included to highlight for clinical review genotypes that are plausibly associated with
both the relevant disease (RD) and another disease that represents an incidental
finding (IF). For example, biallelic mutations in BRCA2 cause a developmental
disorder (Fanconi Anaemia) but will also define a cancer predisposition for both
parents of the affected individual. The locus-genotype-mechanism- disease-
evidence link is further characterized by coding the organ specificity and linking to
a set of phenotype terms from the Human Phenotype Ontology (HPO)20. We also
store the identifiers of the publications that provide evidence for that specific gene-
disease thread.

These data are all accessible via the G2P web application, which is searchable by
gene symbol, disease name or disease ontology term. The full datasets are also
available for download as CSV files (https://www.ebi.ac.uk/gene2phenotype/
downloads). For a dataset to be publicly released it must be comprehensive, up-to-
date and have a plan for future active curation. To improve consistency in dataset
curation and provide clarity to potential users, the rules used to assign confidence,
allelic requirement and mutation consequence to entries are defined and available
via the web application in the form of tables (Supplementary Tables 1–3).

Locus-genotype-mechanism-disease-evidence threads (LGMDET). Two G2P
datasets: G2PDD and G2PCancer (Supplementary Data File 1 and 2) are currently
available. G2PDD includes LGMDETs associated with clinically significant devel-
opmental disorders, i.e. severe and/or extreme disorders that plausibly have their
genesis during embryogenesis or early fetal brain developments. This dataset was
populated by a combination of clinical knowledge, systematic literature review and
genes from existing in-house gene panels by two consultant clinical geneticists
(DRF and HVF). We chose to exclude two major groups of developmental disease
—isolated hearing loss and isolated dental anomalies—which are planned to have

their own G2P panels and (excepting composite phenotypes) are unlikely to pre-
sent as undiagnosed developmental disorders. G2PCancer aims to identify Mende-
lian cancer susceptibility in individuals affected with cancer or with a strong family
history.

The characteristics of the 2044 G2PDD and 123 G2PCancer reportable (i.e.
confirmed, probable, RD&IF) LGMDET entries are summarized in Table 1.

Variant calling and quality filtering. To evaluate the performance of the VEP-
G2P plugin we analyzed three independent sets of WES variant data, each of which
had undergone extensive prior analysis. It should be noted that due to differences
in the upstream variant calling pipelines (Table 2; data also processed at different
times at different centres), there is a slight excess in the number of filtered and
unfiltered variants per sample in the DDD cohort compared to the colorectal
cancer (CRC) and Generation Scotland (GS)21,22 cohorts (Supplementary Table 4).
Although it would be possible to realign and recall these datasets to ensure con-
sistency, we chose to proceed without trying to resolve these differences as this is
representative of realistic data available to most research groups involved in clinical
diagnostic research.

The three cohorts (Table 2) were screened for poor quality or potentially
contaminated samples. For each sample, we computed the number of extreme
heterozygous variants (allele depth/read depth (AD/DP) <0.15 or AD/DP >0.8) and
the number of rare homozygous variants (ExAC allele frequency <0.01). Samples
with more extreme heterozygous variants than the cohort mean+ 3 standard
deviations (SD) or less rare homozygotes than the cohort mean—3 SD were
excluded from further analyses. One hundred fifty-nine samples were excluded in
DDD and seven in each CRC and GS.

The variants identified for each sample were screened and those with genotype
quality <13 (95% confidence), DP <5 (DDD has the lowest average coverage of the
three cohorts) or AD/DP <0.2 were reset to no-calls. Furthermore, variants with
mapping quality (MQ) <13 (95% confidence) in DDD were also reset to no-calls;
MQ filtering was not possible for the GS cohort (combined VCF, no MQ value
available for individual calls). The variants in the cohorts’ VCFs have been
decomposed and normalized with VT23 (v0.5) prior to submission to G2P.

VEP-G2P plugin. The VEP-G2P plugin is designed to utilise LGMDET data in a
simple text format to identify plausibly disease-causing variants from WES or WGS
data in VCF files; it enables the facile and flexible integration of extensive allele
frequency data in addition to mutation consequence. The default VEP predictions
and annotations are invaluable for filtering variants to find those relevant for
further analysis based on consequence type and allele frequencies. The VEP-G2P
plugin uses the default VEP annotations, the individual’s genotype information and
knowledge from the G2P datasets to find genes, which have a sufficient number of
potentially deleterious variants according to their allelic requirements and are
therefore likely disease causing (Fig. 1; Supplementary Methods).

The VEP-G2P analysis was performed using a local VEP installation. Allele
frequencies from the 1000 Genomes Project24, NHLBI GO Exome Sequencing
Project (ESP, https://esp.gs.washington.edu), gnomAD25, UK10K26 and TOPMed
(https://www.nhlbiwgs.org/) studies were used to filter genotypes and SIFT27,
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PolyPhen-228 and Combined Annotation Dependent Depletion (CADD29) scores
were used to help evaluate results. Detailed descriptions of the implementation of
the VEP-G2P plugin and website are provided as Supplementary Methods.

Comparison with freely available variant filtering software. To compare dif-
ferent approaches three test sets of data were created: Set A contains 100 random
DDD samples with a previously established de novo causative variant in the 94
genes with whole-genome significance (Fig. 4a, left panel); Set B contains another
100 random DDD samples with a single gene diagnosis (both monoallelic and
biallelic mode of inheritance, no overlap with Set A, Fig. 4a, right panel) and Set C
which contains 100 random samples from the unaffected Generation Scotland (GS)
cohort to be used for evaluation of the background gene noise/false-positives (FP)
analysis (Fig. 4b).

VEP-G2P was used as outlined above. For VVP the input files were VEP (v90)
annotated VCFs using the consequence filters as VEP-G2P with MAF <0.005 in
1KG and gnomAD exomes. The same sets of variants VCFs were used as input to
DIVINE, which performs its own annotation. For GAVIN the VCFs were
annotated with SnpEff, CADD and ExAC MAFs. For AMELIE, at the time of this
analysis, no VCF option was available at the AMELIE website so for each sample
we generated a gene list consisting of the genes harbouring candidate variants using
the same input as VVP plus filtering to exclude variants with allele count >3 or
homozygous count >1 in gnomAD exomes and excluding genes with a single
heterozygous variant with MAF >0.0001 (same threshold as in VEP-G2P).

AMELIE and DIVINE also take as input a list of HPO terms associated with the
sample and for each of the DDD samples we extracted the corresponding HPO
terms (Set A: median= 7, mean= 8.4, sd= 4.6 and Set B: median= 6, mean= 6.8,
sd= 4.2). One half of the unaffected samples in Set C were randomly assigned with
a Set A sample HPO list, the other half with a Set B sample HPO list (median= 7,
mean= 7.9, sd= 4.5).

Online resources. Gene2Phenotype https://www.ebi.ac.uk/gene2phenotype/
VEP-G2P https://www.ebi.ac.uk/gene2phenotype/g2p_vep_plugin
PanelApp https://panelapp.genomicsengland.co.uk
AMELIE https://AMELIE.stanford.edu
DIVINE https://github.com/hwanglab/divine
VVP https://github.com/Yandell-Lab/VVP-pub
GAVIN http://molgenis.org/gavin

Data availability
The DDD VCF files used in this manuscript are available (managed access) from the
European Genome-Phenome Archive (EGA) under the Dataset ID EGAD00001003340
(DDD DATAFREEZE 2016-10-03: 7831 trios). The cognate DDD phenotypic and family
descriptions are available as EGAD00001003350. The Generation Scotland VCF files are
available (managed access) from EGA under Dataset ID EGAD00001002715. All other
relevant data are available upon request.

Code availability
The code for the VEP-G2P plugin is available via github https://github.com/Ensembl/
VEP_plugins/blob/release/95/G2P.pm.
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