2,100 research outputs found

    Timing behavior of the Magnetically Active Rotation-Powered Pulsar in the Supernova Remnant Kestevan 75

    Full text link
    We report a large spin-up glitch in PSR J1846-0258 which coincided with the onset of magnetar-like behavior on 2006 May 31. We show that the pulsar experienced an unusually large glitch recovery, with a recovery fraction of Q=8.7+/- 2.5, resulting in a net decrease of the pulse frequency. Such a glitch recovery has never before been observed in a rotation-powered pulsar, however, similar but smaller glitch over-recovery has been recently reported in the magnetar AXP 4U~0142+61 and may have occurred in the SGR 1900+14. We also report a large increase in the timing noise of the source. We discuss the implications of the unusual timing behavior in PSR J1846-0258 on its status as the first identified magnetically active rotation-powered pulsar.Comment: 14 pages, 5 figures, Accepted for publication in the Astrophysical Journal. Incorporates changes from an anonymous referee; additional analysis and discussion include

    Drug Susceptibility in Leishmania Isolates Following Miltefosine Treatment in Cases of Visceral Leishmaniasis and Post Kala-Azar Dermal Leishmaniasis

    Get PDF
    Resistance to antimonials has emerged as a major hurdle to the treatment and control of VL and led to the introduction of Miltefosine as first line treatment in the Indian subcontinent. MIL is an oral drug with a long half-life, and it is feared that resistance may emerge rapidly, threatening control efforts under the VL elimination program. There is an urgent need for monitoring treatment efficacy and emergence of drug resistance in the field. In a set of VL/PKDL cases recruited for MIL treatment, we observed comparable drug susceptibility in pre- and post-treatment isolates from cured VL patients while MIL susceptibility was significantly reduced in isolates from VL relapse and PKDL cases. The PKDL isolates showed higher tolerance to MIL as compared to VL isolates. Both VL and PKDL isolates were uniformly susceptible to PMM. MIL transporter genes LdMT/LdRos3 were previously reported as potential resistance markers in strains in which MIL resistance was experimentally induced. The point mutations and the down-regulated expression of these transporters observed in vitro could, however, not be verified in natural populations of parasites. LdMT/LdRos3 genes therefore, do not appear to be suitable markers so far for monitoring drug susceptibility in clinical leishmanial isolates

    Assay strategies for the discovery and validation of therapeutics targeting <i>Brugia pahangi</i> Hsp90

    Get PDF
    The chemotherapy of lymphatic filariasis relies upon drugs such as diethylcarbamazine and ivermectin that largely target the microfilarial stages of the parasite, necessitating continued treatment over the long reproductive life span of the adult worm. The identification of compounds that target adult worms has been a long-term goal of WHO. Here we describe a fluorescence polarization assay for the identification of compounds that target Hsp90 in adult filarial worms. The assay was originally developed to identify inhibitors of Hsp90 in tumor cells, and relies upon the ability of small molecules to inhibit the binding of fluorescently labelled geldanamycin to Hsp90. We demonstrate that the assay works well with soluble extracts of Brugia, while extracts of the free-living nematode C. elegans fail to bind the probe, in agreement with data from other experiments. The assay was validated using known inhibitors of Hsp90 that compete with geldanamycin for binding to Hsp90, including members of the synthetic purine-scaffold series of compounds. The efficacy of some of these compounds against adult worms was confirmed in vitro. Moreover, the assay is sufficiently sensitive to differentiate between binding of purine-scaffold compounds to human and Brugia Hsp90. The assay is suitable for high-throughput screening and provides the first example of a format with the potential to identify novel inhibitors of Hsp90 in filarial worms and in other parasitic species where Hsp90 may be a target

    Knowledge, perception and practice towards oxytocin stability and quality: A qualitative study of stakeholders in three resource-limited countries

    Get PDF
    Background: Oxytocin is the gold standard drug for the prevention of postpartum haemorrhage, but limitations in cold chain systems in resource-constrained settings can severely compromise the quality of oxytocin product available in these environments. This study investigated the perspectives and practices of stakeholders in low and lower-middle income countries towards oxytocin, its storage requirements and associated barriers, and the quality of product available. Methods: Qualitative inquiries were undertaken in Ethiopia, India and Myanmar, where data was collected through Focus Group Discussions (FGDs) and In-Depth Interviews (IDIs). A total of 12 FGDs and 106 IDIs were conducted with 158 healthcare providers (pharmacists, midwives, nurses, doctors and obstetricians) and 40 key informants (supply chain experts, program managers and policy-makers). Direct observations of oxytocin storage practices and cold chain resources were conducted at 51 healthcare facilities. Verbatim transcripts of FGDs and IDIs were translated to English and analysed according to a thematic content analysis framework. Findings: Stakeholder awareness of oxytocin heat sensitivity and the requirement for cold storage of the drug was widespread in Ethiopia but more limited in Myanmar and India. A consistent finding across all study regions was the significant barriers to maintaining a consistent cold chain, with the lack of refrigeration facilities and unreliability of electricity cited as major challenges. Perceptions of compromised oxytocin quality were expressed by some stakeholders in each country. Conclusion: Knowledge of the heat sensitivity of oxytocin and the potential impacts of inconsistent cold storage on product quality is not widespread amongst healthcare providers, policy makers and supply chain experts in Myanmar, Ethiopia and India. Targeted training and advocacy messages are warranted to emphasise the importance of cold storage to maintain oxytocin quality

    Liver X Receptor Activation with an Intranasal Polymer Therapeutic Prevents Cognitive Decline without Altering Lipid Levels

    Get PDF
    The progressive accumulation of amyloid-beta (Aβ) in specific areas of the brain is a common prelude to late-onset of Alzheimer's disease (AD). Although activation of liver X receptors (LXR) with agonists decreases Aβ levels and ameliorates contextual memory deficit, concomitant hypercholesterolemia/hypertriglyceridemia limits their clinical application. DMHCA (N,N-dimethyl-3β-hydroxycholenamide) is an LXR partial agonist that, despite inducing the expression of apolipoprotein E (main responsible of Aβ drainage from the brain) without increasing cholesterol/triglyceride levels, shows nil activity in vivo because of a low solubility and inability to cross the blood brain barrier. Herein, we describe a polymer therapeutic for the delivery of DMHCA. The covalent incorporation of DMHCA into a PEG-dendritic scaffold via carboxylate esters produces an amphiphilic copolymer that efficiently self-assembles into nanometric micelles that exert a biological effect in primary cultures of the central nervous system (CNS) and experimental animals using the intranasal route. After CNS biodistribution and effective doses of DMHCA micelles were determined in nontransgenic mice, a transgenic AD-like mouse model of cerebral amyloidosis was treated with the micelles for 21 days. The benefits of the treatment included prevention of memory deterioration and a significant reduction of hippocampal Aβ oligomers without affecting plasma lipid levels. These results represent a proof of principle for further clinical developments of DMHCA delivery systems.Fil: Navas Guimaraes, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Catolica de Cuyo. Facultad de Ciencias Medicas. Instituto de Investigacion En Ciencias Biomedicas.; ArgentinaFil: Lopez Blanco, Roi. Universidad de Santiago de Compostela; EspañaFil: Correa, Juan. Universidad de Santiago de Compostela; EspañaFil: Fernandez Villamarin, Marcos. Universidad de Santiago de Compostela; EspañaFil: Bistue Millon, Maria Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Catolica de Cuyo. Facultad de Ciencias Medicas. Instituto de Investigacion En Ciencias Biomedicas.; ArgentinaFil: Martino Adami, Pamela Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Morelli, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Kumar, Vijay. University of Colorado; Estados UnidosFil: Wempe, Michael F.. University of Colorado; Estados UnidosFil: Cuello, A. C.. McGill University; CanadáFil: Fernandez Megia, Eduardo. Universidad de Santiago de Compostela; EspañaFil: Bruno, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Catolica de Cuyo. Facultad de Ciencias Medicas. Instituto de Investigacion En Ciencias Biomedicas.; Argentin

    New drugs and novel mechanisms of action in multiple myeloma in 2013: a report from the International Myeloma Working Group (IMWG)

    Get PDF
    Treatment in medical oncology is gradually shifting from the use of nonspecific chemotherapeutic agents toward an era of novel targeted therapy in which drugs and their combinations target specific aspects of the biology of tumor cells. Multiple myeloma (MM) has become one of the best examples in this regard, reflected in the identification of new pathogenic mechanisms, together with the development of novel drugs that are being explored from the preclinical setting to the early phases of clinical development. We review the biological rationale for the use of the most important new agents for treating MM and summarize their clinical activity in an increasingly busy field. First, we discuss data from already approved and active agents (including second- and third-generation proteasome inhibitors (PIs), immunomodulatory agents and alkylators). Next, we focus on agents with novel mechanisms of action, such as monoclonal antibodies (MoAbs), cell cycle-specific drugs, deacetylase inhibitors, agents acting on the unfolded protein response, signaling transduction pathway inhibitors and kinase inhibitors. Among this plethora of new agents or mechanisms, some are specially promising: anti-CD38 MoAb, such as daratumumab, are the first antibodies with clinical activity as single agents in MM. Moreover, the kinesin spindle protein inhibitor Arry-520 is effective in monotherapy as well as in combination with dexamethasone in heavily pretreated patients. Immunotherapy against MM is also being explored, and probably the most attractive example of this approach is the combination of the anti-CS1 MoAb elotuzumab with lenalidomide and dexamethasone, which has produced exciting results in the relapsed/refractory setting.Peer Reviewe

    Prospective Study Delivering Simultaneous Integrated High-dose Tumor Boost (≤70 Gy) With Image Guided Adaptive Radiation Therapy for Radical Treatment of Localized Muscle-Invasive Bladder Cancer

    Get PDF
    PurposeImage guided adaptive radiation therapy offers individualized solutions to improve target coverage and reduce normal tissue irradiation, allowing the opportunity to increase the radiation tumor dose and spare normal bladder tissue.Methods and MaterialsA library of 3 intensity modulated radiation therapy plans were created (small, medium, and large) from planning computed tomography (CT) scans performed at 30 and 60 minutes; treating the whole bladder to 52 Gy and the tumor to 70 Gy in 32 fractions. A “plan of the day” approach was used for treatment delivery. A post-treatment cone beam CT (CBCT) scan was acquired weekly to assess intrafraction filling and coverage.ResultsA total of 18 patients completed treatment to 70 Gy. The plan and treatment for 1 patient was to 68 Gy. Also, 1 patient's plan was to 70 Gy but the patient was treated to a total dose of 65.6 Gy because dose-limiting toxicity occurred before dose escalation. A total of 734 CBCT scans were evaluated. Small, medium, and large plans were used in 36%, 48%, and 16% of cases, respectively. The mean ± standard deviation rate of intrafraction filling at the start of treatment (ie, week 1) was 4.0 ± 4.8 mL/min (range 0.1-19.4) and at end of radiation therapy (ie, week 5 or 6) was 1.1 ± 1.6 mL/min (range 0.01-7.5; P=.002). The mean D98 (dose received by 98% volume) of the tumor boost and bladder as assessed on the post-treatment CBCT scan was 97.07% ± 2.10% (range 89.0%-104%) and 99.97% ± 2.62% (range 96.4%-112.0%). At a median follow-up period of 19 months (range 4-33), no muscle-invasive recurrences had developed. Two patients experienced late toxicity (both grade 3 cystitis) at 5.3 months (now resolved) and 18 months after radiation therapy.ConclusionsImage guided adaptive radiation therapy using intensity modulated radiation therapy to deliver a simultaneous integrated tumor boost to 70 Gy is feasible, with acceptable toxicity, and will be evaluated in a randomized trial

    Rare B decays and Tevatron top-pair asymmetry

    Full text link
    The recent Tevatron result on the top quark forward-backward asymmetry, which deviates from its standard model prediction by 3.4σ\sigma, has prompted many authors to build new models to account for this anomaly. Among the various proposals, we find that those mechanisms which produce ttˉt\bar t via tt- or uu-channel can have a strong correlation to the rare B decays. We demonstrate this link by studying a model with a new charged gauge boson, WW'. In terms of the current measurements on BπKB\to \pi K decays, we conclude that the branching ratio for BπKˉ0B^-\to \pi^- \bar K^0 is affected most by the new effects. Furthermore, using the world average branching ratio for the exclusive B decays at 2σ2\sigma level, we discuss the allowed values for the new parameters. Finally, we point out that the influence of the new physics effects on the direct CP asymmetry in B decays is insignificant.Comment: 15 page, 6 figures, typos corrected and references added, final version to appear journa

    Low-Energy Probes of a Warped Extra Dimension

    Full text link
    We investigate a natural realization of a light Abelian hidden sector in an extended Randall-Sundrum (RS) model. In addition to the usual RS bulk we consider a second warped space containing a bulk U(1)_x gauge theory with a characteristic IR scale of order a GeV. This Abelian hidden sector can couple to the standard model via gauge kinetic mixing on a common UV brane. We show that if such a coupling induces significant mixing between the lightest U(1)_x gauge mode and the standard model photon and Z, it can also induce significant mixing with the heavier U(1)_x Kaluza-Klein (KK) modes. As a result it might be possible to probe several KK modes in upcoming fixed-target experiments and meson factories, thereby offering a new way to investigate the structure of an extra spacetime dimension.Comment: 26 pages, 1 figure, added references, corrected minor typos, same as journal versio
    corecore