58 research outputs found

    Global changes in the proteome of Cupriavidus necator H16 during poly-(3-hydroxybutyrate) synthesis from various biodiesel by-product substrates

    Get PDF
    Additional file 1: Table S1. P-scores of proteomic runs of C. necator H16 grown with different substrates

    Peptide retention time prediction for immobilized artificial membrane phosphatidylcholine stationary phase: method development and preliminary observations

    Get PDF
    Development of the first peptide retention prediction model for immobilized artificial membrane phosphatidylcholine (IAM.PC) stationary phase is reported. 2D liquid chromatography coupled to tandem mass spectrometry (2D LC-MS/MS) analysis of a whole cell lysate of S. cerevisiae yielded a retention dataset of ~29,500 tryptic peptides; sufficient for confident assignment of retention coefficients which determine the contribution of individual amino acids in peptide retention. Retention data from the first dimension was used for the modelling: an IAM.PC.DD2 column, with pH 7.4 ammonium bicarbonate, and a water/acetonitrile gradient. Peptide separation using the IAM.PC.DD2 phase was compared to a standard C18 phase (Luna C18(2)). There was a significant reduction in peptide retention (~14 % acetonitrile on average), indicating that the phosphatidylcholine stationary phase is significantly more hydrophilic. In comparison to the C18 phase, a substantial increase was found in the relative retention contribution for the positively charged Arg and Lys, and the aromatic Tyr, Trp and His residues. A decrease in retention contribution was observed for the negatively charged Asp and Glu. This indicates an involvement of electrostatic interactions with the glycerophosphate functional groups, and possibly, delocalization effects from hydrogen bonds between the phosphate group and the aromatic side chains in the separation mechanism

    A proteomic evaluation of urinary changes associated with cardiopulmonary bypass

    Get PDF
    Additional file 4: Table S4. Correlation filtered 2D DDA/IDA and SWATH protein difference values

    The proteome of extracellular vesicles released by clastic cells differs based on their substrate

    Get PDF
    Extracellular vesicles (EVs) from osteoclasts are important regulators in intercellular communication. Here, we investigated the proteome of EVs from clastic cells plated on plastic (clasts), bone (osteoclasts) and dentin (odontoclasts) by two-dimensional high performance liquid chromatography mass spectrometry seeking differences attributable to distinct mineralized matrices. A total of 1,952 proteins were identified. Of the 500 most abundant proteins in EVs, osteoclast and odontoclast EVs were 83.3% identical, while clasts shared 70.7% of the proteins with osteoclasts and 74.2% of proteins with odontoclasts. For each protein, the differences between the total ion count values were mapped to an expression ratio histogram (Z-score) in order to detect proteins differentially expressed. Stabilin-1 and macrophage mannose receptor-1 were significantly-enriched in EVs from odontoclasts compared with osteoclasts (Z = 2.45, Z = 3.34) and clasts (Z = 13.86, Z = 1.81) and were abundant in odontoclast EVs. Numerous less abundant proteins were differentially-enriched. Subunits of known protein complexes were abundant in clastic EVs, and were present at levels consistent with them being in assembled protein complexes. These included the proteasome, COP1, COP9, the T complex and a novel sub-complex of vacuolar H+ -ATPase (V-ATPase), which included the (pro) renin receptor. The (pro) renin receptor was immunoprecipitated using an anti-E-subunit antibody from detergent-solubilized EVs, supporting the idea that the V-ATPase subunits present were in the same protein complex. We conclude that the protein composition of EVs released by clastic cells changes based on the substrate. Clastic EVs are enriched in various protein complexes including a previously undescribed VATPase sub-complex

    A framework for human microbiome research

    Get PDF
    A variety of microbial communities and their genes (the microbiome) exist throughout the human body, with fundamental roles in human health and disease. The National Institutes of Health (NIH)-funded Human Microbiome Project Consortium has established a population-scale framework to develop metagenomic protocols, resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 or 18 body sites up to three times, which have generated 5,177 microbial taxonomic profiles from 16S ribosomal RNA genes and over 3.5 terabases of metagenomic sequence so far. In parallel, approximately 800 reference strains isolated from the human body have been sequenced. Collectively, these data represent the largest resource describing the abundance and variety of the human microbiome, while providing a framework for current and future studies

    Structure, function and diversity of the healthy human microbiome

    Get PDF
    Author Posting. © The Authors, 2012. This article is posted here by permission of Nature Publishing Group. The definitive version was published in Nature 486 (2012): 207-214, doi:10.1038/nature11234.Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.This research was supported in part by National Institutes of Health grants U54HG004969 to B.W.B.; U54HG003273 to R.A.G.; U54HG004973 to R.A.G., S.K.H. and J.F.P.; U54HG003067 to E.S.Lander; U54AI084844 to K.E.N.; N01AI30071 to R.L.Strausberg; U54HG004968 to G.M.W.; U01HG004866 to O.R.W.; U54HG003079 to R.K.W.; R01HG005969 to C.H.; R01HG004872 to R.K.; R01HG004885 to M.P.; R01HG005975 to P.D.S.; R01HG004908 to Y.Y.; R01HG004900 to M.K.Cho and P. Sankar; R01HG005171 to D.E.H.; R01HG004853 to A.L.M.; R01HG004856 to R.R.; R01HG004877 to R.R.S. and R.F.; R01HG005172 to P. Spicer.; R01HG004857 to M.P.; R01HG004906 to T.M.S.; R21HG005811 to E.A.V.; M.J.B. was supported by UH2AR057506; G.A.B. was supported by UH2AI083263 and UH3AI083263 (G.A.B., C. N. Cornelissen, L. K. Eaves and J. F. Strauss); S.M.H. was supported by UH3DK083993 (V. B. Young, E. B. Chang, F. Meyer, T. M. S., M. L. Sogin, J. M. Tiedje); K.P.R. was supported by UH2DK083990 (J. V.); J.A.S. and H.H.K. were supported by UH2AR057504 and UH3AR057504 (J.A.S.); DP2OD001500 to K.M.A.; N01HG62088 to the Coriell Institute for Medical Research; U01DE016937 to F.E.D.; S.K.H. was supported by RC1DE0202098 and R01DE021574 (S.K.H. and H. Li); J.I. was supported by R21CA139193 (J.I. and D. S. Michaud); K.P.L. was supported by P30DE020751 (D. J. Smith); Army Research Office grant W911NF-11-1-0473 to C.H.; National Science Foundation grants NSF DBI-1053486 to C.H. and NSF IIS-0812111 to M.P.; The Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231 for P.S. C.; LANL Laboratory-Directed Research and Development grant 20100034DR and the US Defense Threat Reduction Agency grants B104153I and B084531I to P.S.C.; Research Foundation - Flanders (FWO) grant to K.F. and J.Raes; R.K. is an HHMI Early Career Scientist; Gordon&BettyMoore Foundation funding and institutional funding fromthe J. David Gladstone Institutes to K.S.P.; A.M.S. was supported by fellowships provided by the Rackham Graduate School and the NIH Molecular Mechanisms in Microbial Pathogenesis Training Grant T32AI007528; a Crohn’s and Colitis Foundation of Canada Grant in Aid of Research to E.A.V.; 2010 IBM Faculty Award to K.C.W.; analysis of the HMPdata was performed using National Energy Research Scientific Computing resources, the BluBioU Computational Resource at Rice University

    The face of the other: the particular versus the individual

    Full text link

    Exploring the variable space of shallow machine learning models for reversed-phase retention time prediction

    No full text
    Peptide retention time (RT) prediction algorithms are tools to study and identify the physicochemical properties that drive the peptide-sorbent interaction. Traditional RT algorithms use multiple linear regression with manually curated parameters to determine the degree of direct contribution for each parameter and improvements to RT prediction accuracies relied on superior feature engineering. Deep learning led to a significant increase in RT prediction accuracy and automated feature engineering via chaining multiple learning modules. However, the significance and the identity of these extracted variables are not well understood due to the inherent complexity when interpreting “relationships-of-relationships” found in deep learning variables. To achieve both accuracy and interpretability simultaneously, we isolated individual modules used in deep learning and the isolated modules are the shallow learners employed for RT prediction in this work. Using a shallow convolutional neural network (CNN) and gated recurrent unit (GRU), we find that the spatial features obtained via the CNN correlate with real-world physicochemical properties namely cross-collisional sections (CCS) and variations of assessable surface area (ASA). Furthermore, we determined that the discovered parameters are “micro-coefficients” that contribute to the “macro-coefficient” – hydrophobicity. Manually embedding CCS and the variations of ASA to the GRU model yielded an R2 = 0.981 using only 525 variables and can represent 88% of the ∌110,000 tryptic peptides used in our dataset. This work highlights the feature discovery process of our shallow learners can achieve beyond traditional RT models in performance and have better interpretability when compared with the deep learning RT algorithms found in the literature
    • 

    corecore