78 research outputs found

    Interpretation of very low resolution X-ray electron-density maps using core objects

    Get PDF
    The interpretation of a 20 Å resolution electron-density map using segmentation and pattern-recognition-based identification of domain shapes is described

    Accelerated X-ray Structure Elucidation of a 36 kDa Muramidase/Transglycosylase Using wARP

    Get PDF
    The X-ray structure of the 36kDa soluble lytic transglycosylase from Escherichia coli has been determined starting with the multiple isomorphous replacement method with inclusion of anomalous scattering at 2.7 Å resolution. Subsequently, before any model building was carried out, phases were extended to 1.7 Å, resolution with the weighted automated refinement procedure wARP, which gave a dramatic improvement in the phases. The electron-density maps from wARP were of outstanding quality for both the main chain and the side chains of the protein, which allowed the time spent on the tracing, interpretation and building of the X-ray structure to be substantially shortened. The structure of the soluble lyric transglycosylase was refined at 1.7 Å, resolution with X-PLOR to a final crystallographic R factor of 18.9%. Analysis of the wARP procedure revealed that the use of the maximum-likelihood refinement in wARP gave much better phases than least-squares refinement, provided that the ratio of reflections to protein atom parameters was approximately 1.8 or higher. Furthermore, setting aside 5% of the data for an Rfree test set had a negative effect on the phase improvement. The mean WwARP, a weight determined at the end of the wARP procedure and based on the variance of structure factors from six individually refined wARP models, proved to be a better indicator than the Rfree factor to judge different phase improvement protocols. The elongated Slt35 structure has three domains named the alpha, beta and core domains. The alpha domain contains mainly α-helices, while the beta domain consists of a five-stranded antiparallel β-sheet flanked by a short α-helix. Sandwiched between the alpha and beta domains is the core domain, which bears some resemblance to the fold of the catalytic domain of the previously elucidated 70 kDa soluble lytic transglycosylase from E. coli. The putative active site is at the bottom of a large deep groove in the core domain.

    ARP

    Full text link

    ARP/wARP and molecular replacement: the next generation

    Get PDF
    A systematic test shows how ARP/wARP deals with automated model building for structures that have been solved by molecular replacement. A description of protocols in the flex-wARP control system and studies of two specific cases are also presented

    Mapping of the immunodominant regions of the NAD-dependent formate dehydrogenase

    Get PDF
    AbstractA panel of 4 monoclonal antibodies and 7 polyclonal antisera against NAD-dependent formate dehydrogenase from methylotrophic bacterium Pseudomonas sp. 101 has been obtained. The reactivity of the 37 overlapping proteolytic peptides with the monoclonal antibodies and polyclonal antisera has been studied with ELISA test. The data obtained were interpreted residing on the structural model of the formate dehydrogenase at 3 Ã… resolution. The immunodominant regions in the formate dehydrogenase molecule and the epitopes for the monoclonal antibodies were elucidated

    Structural and functional insights into the unique CBS-CP12 fusion protein family in cyanobacteria

    Get PDF
    Cyanobacteria are important photosynthetic organisms inhabiting a range of dynamic environments. This phylum is distinctive among photosynthetic organisms in containing genes encoding uncharacterized cystathionine β-synthase (CBS)–chloroplast protein (CP12) fusion proteins. These consist of two domains, each recognized as stand-alone photosynthetic regulators with different functions described in cyanobacteria (CP12) and plants (CP12 and CBSX). Here we show that CBS–CP12 fusion proteins are encoded in distinct gene neighborhoods, several unrelated to photosynthesis. Most frequently, CBS–CP12 genes are in a gene cluster with thioredoxin A (TrxA), which is prevalent in bloom-forming, marine symbiotic, and benthic mat cyanobacteria. Focusing on a CBS–CP12 from Microcystis aeruginosa PCC 7806 encoded in a gene cluster with TrxA, we reveal that the domain fusion led to the formation of a hexameric protein. We show that the CP12 domain is essential for hexamerization and contains an ordered, previously structurally uncharacterized N-terminal region. We provide evidence that CBS–CP12, while combining properties of both regulatory domains, behaves different from CP12 and plant CBSX. It does not form a ternary complex with phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase. Instead, CBS–CP12 decreases the activity of PRK in an AMP-dependent manner. We propose that the novel domain architecture and oligomeric state of CBS–CP12 expand its regulatory function beyond those of CP12 in cyanobacteria
    • …
    corecore