256 research outputs found

    Competition-based model of pheromone component ratio detection in the moth

    Get PDF
    For some moth species, especially those closely interrelated and sympatric, recognizing a specific pheromone component concentration ratio is essential for males to successfully locate conspecific females. We propose and determine the properties of a minimalist competition-based feed-forward neuronal model capable of detecting a certain ratio of pheromone components independently of overall concentration. This model represents an elementary recognition unit for the ratio of binary mixtures which we propose is entirely contained in the macroglomerular complex (MGC) of the male moth. A set of such units, along with projection neurons (PNs), can provide the input to higher brain centres. We found that (1) accuracy is mainly achieved by maintaining a certain ratio of connection strengths between olfactory receptor neurons (ORN) and local neurons (LN), much less by properties of the interconnections between the competing LNs proper. An exception to this rule is that it is beneficial if connections between generalist LNs (i.e. excited by either pheromone component) and specialist LNs (i.e. excited by one component only) have the same strength as the reciprocal specialist to generalist connections. (2) successful ratio recognition is achieved using latency-to-first-spike in the LN populations which, in contrast to expectations with a population rate code, leads to a broadening of responses for higher overall concentrations consistent with experimental observations. (3) when longer durations of the competition between LNs were observed it did not lead to higher recognition accuracy

    Factors associated with self-care activities among adults in the United Kingdom: a systematic review

    Get PDF
    Background: The Government has promoted self-care. Our aim was to review evidence about who uses self-tests and other self-care activities (over-the-counter medicine, private sector,complementary and alternative medicine (CAM), home blood pressure monitors). Methods: During April 2007, relevant bibliographic databases (Medline, Embase, Cumulative Index to Nursing and Allied Health Literature, Applied Social Sciences Index and Abstracts, PsycINFO,British Nursing Index, Allied and Complementary Medicine Database, Sociological Abstracts, International Bibliography of the Social Sciences, Arthritis and Complementary Medicine Database, Complementary and Alternative Medicine and Pain Database) were searched, and potentially relevant studies were reviewed against eligibility criteria. Studies were included if they were published during the last 15 years and identified factors, reasons or characteristics associated with a relevant activity among UK adults. Two independent reviewers used proformas to assess the quality of eligible studies. Results: 206 potentially relevant papers were identified, 157 were excluded, and 49 papers related to 46 studies were included: 37 studies were, or used data from questionnaire surveys, 36 had quality scores of five or more out of 10, and 27 were about CAM. Available evidence suggests that users of CAM and over-the-counter medicine are female, middle-aged, affluent and/or educated with some measure of poor health, and that people who use the private sector are affluent and/or educated. Conclusion: People who engage in these activities are likely to be affluent. Targeted promotion may, therefore, be needed to ensure that use is equitable. People who use some activities also appear to have poorer measures of health than non-users or people attending conventional services. It is, therefore, also important to ensure that self-care is not used as a second choice for people who have not had their needs met by conventional service

    Diagnostic Accuracy of Age and Alarm Symptoms for Upper GI Malignancy in Patients with Dyspepsia in a GI Clinic: A 7-Year Cross-Sectional Study

    Get PDF
    <div><h3>Objectives</h3><p>We investigated whether using demographic characteristics and alarm symptoms can accurately predict cancer in patients with dyspepsia in Iran, where upper GI cancers and <em>H. pylori</em> infection are common.</p> <h3>Methods</h3><p>All consecutive patients referred to a tertiary gastroenterology clinic in Tehran, Iran, from 2002 to 2009 were invited to participate in this study. Each patient completed a standard questionnaire and underwent upper gastrointestinal endoscopy. Alarm symptoms included in the questionnaire were weight loss, dysphagia, GI bleeding, and persistent vomiting. We used logistic regression models to estimate the diagnostic value of each variable in combination with other ones, and to develop a risk-prediction model.</p> <h3>Results</h3><p>A total of 2,847 patients with dyspepsia participated in this study, of whom 87 (3.1%) had upper GI malignancy. Patients reporting at least one of the alarm symptoms constituted 66.7% of cancer patients compared to 38.9% in patients without cancer (p<0.001). Esophageal or gastric cancers in patients with dyspepsia was associated with older age, being male, and symptoms of weight loss and vomiting. Each single predictor had low sensitivity and specificity. Using a combination of age, alarm symptoms, and smoking, we built a risk-prediction model that distinguished between high-risk and low-risk individuals with an area under the ROC curve of 0.85 and acceptable calibration.</p> <h3>Conclusions</h3><p>None of the predictors demonstrated high diagnostic accuracy. While our risk-prediction model had reasonable accuracy, some cancer cases would have remained undiagnosed. Therefore, where available, low cost endoscopy may be preferable for dyspeptic older patient or those with history of weight loss.</p> </div

    Neural Representations of Airflow in Drosophila Mushroom Body

    Get PDF
    The Drosophila mushroom body (MB) is a higher olfactory center where olfactory and other sensory information are thought to be associated. However, how MB neurons of Drosophila respond to sensory stimuli other than odor is not known. Here, we characterized the responses of MB neurons to a change in airflow, a stimulus associated with odor perception. In vivo calcium imaging from MB neurons revealed surprisingly strong and dynamic responses to an airflow stimulus. This response was dependent on the movement of the 3rd antennal segment, suggesting that Johnston's organ may be detecting the airflow. The calyx, the input region of the MB, responded homogeneously to airflow on. However, in the output lobes of the MB, different types of MB neurons responded with different patterns of activity to airflow on and off. Furthermore, detailed spatial analysis of the responses revealed that even within a lobe that is composed of a single type of MB neuron, there are subdivisions that respond differently to airflow on and off. These subdivisions within a single lobe were organized in a stereotypic manner across flies. For the first time, we show that changes in airflow affect MB neurons significantly and these effects are spatially organized into divisions smaller than previously defined MB neuron types

    Green Crab (Carcinus maenas) Foraging Efficiency Reduced by Fast Flows

    Get PDF
    Predators can strongly influence prey populations and the structure and function of ecosystems, but these effects can be modified by environmental stress. For example, fluid velocity and turbulence can alter the impact of predators by limiting their environmental range and altering their foraging ability. We investigated how hydrodynamics affected the foraging behavior of the green crab (Carcinus maenas), which is invading marine habitats throughout the world. High flow velocities are known to reduce green crab predation rates and our study sought to identify the mechanisms by which flow affects green crabs. We performed a series of experiments with green crabs to determine: 1) if their ability to find prey was altered by flow in the field, 2) how flow velocity influenced their foraging efficiency, and 3) how flow velocity affected their handling time of prey. In a field study, we caught significantly fewer crabs in baited traps at sites with fast versus slow flows even though crabs were more abundant in high flow areas. This finding suggests that higher velocity flows impair the ability of green crabs to locate prey. In laboratory flume assays, green crabs foraged less efficiently when flow velocity was increased. Moreover, green crabs required significantly more time to consume prey in high velocity flows. Our data indicate that flow can impose significant chemosensory and physical constraints on green crabs. Hence, hydrodynamics may strongly influence the role that green crabs and other predators play in rocky intertidal communities

    A Single Sex Pheromone Receptor Determines Chemical Response Specificity of Sexual Behavior in the Silkmoth Bombyx mori

    Get PDF
    In insects and other animals, intraspecific communication between individuals of the opposite sex is mediated in part by chemical signals called sex pheromones. In most moth species, male moths rely heavily on species-specific sex pheromones emitted by female moths to identify and orient towards an appropriate mating partner among a large number of sympatric insect species. The silkmoth, Bombyx mori, utilizes the simplest possible pheromone system, in which a single pheromone component, (E, Z)-10,12-hexadecadienol (bombykol), is sufficient to elicit full sexual behavior. We have previously shown that the sex pheromone receptor BmOR1 mediates specific detection of bombykol in the antennae of male silkmoths. However, it is unclear whether the sex pheromone receptor is the minimally sufficient determination factor that triggers initiation of orientation behavior towards a potential mate. Using transgenic silkmoths expressing the sex pheromone receptor PxOR1 of the diamondback moth Plutella xylostella in BmOR1-expressing neurons, we show that the selectivity of the sex pheromone receptor determines the chemical response specificity of sexual behavior in the silkmoth. Bombykol receptor neurons expressing PxOR1 responded to its specific ligand, (Z)-11-hexadecenal (Z11-16:Ald), in a dose-dependent manner. Male moths expressing PxOR1 exhibited typical pheromone orientation behavior and copulation attempts in response to Z11-16:Ald and to females of P. xylostella. Transformation of the bombykol receptor neurons had no effect on their projections in the antennal lobe. These results indicate that activation of bombykol receptor neurons alone is sufficient to trigger full sexual behavior. Thus, a single gene defines behavioral selectivity in sex pheromone communication in the silkmoth. Our findings show that a single molecular determinant can not only function as a modulator of behavior but also as an all-or-nothing initiator of a complex species-specific behavioral sequence

    The Speed of Smell: Odor-Object Segregation within Milliseconds

    Get PDF
    Segregating objects from background, and determining which of many concurrent stimuli belong to the same object, remains one of the most challenging unsolved problems both in neuroscience and in technical applications. While this phenomenon has been investigated in depth in vision and audition it has hardly been investigated in olfaction. We found that for honeybees a 6-ms temporal difference in stimulus coherence is sufficient for odor-object segregation, showing that the temporal resolution of the olfactory system is much faster than previously thought

    The Trypanosoma cruzi vitamin C dependent peroxidase confers protection against oxidative stress but is not a determinant of virulence.

    Get PDF
    BACKGROUND: The neglected parasitic infection Chagas disease is rapidly becoming a globalised public health issue due to migration. There are only two anti-parasitic drugs available to treat this disease, benznidazole and nifurtimox. Thus it is important to identify and validate new drug targets in Trypanosoma cruzi, the causative agent. T. cruzi expresses an ER-localised ascorbate-dependent peroxidase (TcAPx). This parasite-specific enzyme has attracted interest from the perspective of targeted chemotherapy. METHODOLOGY/PRINCIPAL FINDINGS: To assess the importance of TcAPx in protecting T. cruzi from oxidative stress and to determine if it is essential for virulence, we generated null mutants by targeted gene disruption. Loss of activity was associated with increased sensitivity to exogenous hydrogen peroxide, but had no effect on susceptibility to the front-line Chagas disease drug benznidazole. This suggests that increased oxidative stress in the ER does not play a significant role in its mechanism of action. Homozygous knockouts could proceed through the entire life-cycle in vitro, although they exhibited a significant decrease in their ability to infect mammalian cells. To investigate virulence, we exploited a highly sensitive bioluminescence imaging system which allows parasites to be monitored in real-time in the chronic stage of murine infections. This showed that depletion of enzyme activity had no effect on T. cruzi replication, dissemination or tissue tropism in vivo. CONCLUSIONS/SIGNIFICANCE: TcAPx is not essential for parasite viability within the mammalian host, does not have a significant role in establishment or maintenance of chronic infections, and should therefore not be considered a priority for drug design

    Exposure of neonatal rats to maternal cafeteria feeding during suckling alters hepatic gene expression and DNA methylation in the insulin signalling pathway

    Get PDF
    Nutrition in early life is a determinant of lifelong physiological and metabolic function. Diseases that are associated with ageing may, therefore, have their antecedents in maternal nutrition during pregnancy and lactation. Rat mothers were fed either a standard laboratory chow diet (C) or a cafeteria diet (O) based upon a varied panel of highly palatable human foods, during lactation. Their offspring were then weaned onto chow or cafeteria diet giving four groups of animals (CC, CO, OC, OO n=9-10). Livers were harvested 10 weeks post-weaning for assessment of gene and protein expression, and DNA methylation. Cafeteria feeding post-weaning impaired glucose tolerance and was associated with sex-specific altered mRNA expression of peroxisome proliferator activated receptor gamma (PPARg) and components of the insulin-signalling pathway (Irs2, Akt1 and IrB). Exposure to the cafeteria diet during the suckling period modified the later response to the dietary challenge. Post-weaning cafeteria feeding only down-regulated IrB when associated with cafeteria feeding during suckling (group OO, interaction of diet in weaning and lactation P=0.041). Responses to cafeteria diet during both phases of the experiment varied between males and females. Global DNA methylation was altered in the liver following cafeteria feeding in the post-weaning period, in males but not females. Methylation of the IrB promoter was increased in group OC, but not OO (P=0.036). The findings of this study add to a growing evidence base that suggests tissue function across the lifespan a product of cumulative modifications to the epigenome and transcriptome, which may be both tissue and sex-specific

    An accurate and interpretable model for siRNA efficacy prediction

    Get PDF
    BACKGROUND: The use of exogenous small interfering RNAs (siRNAs) for gene silencing has quickly become a widespread molecular tool providing a powerful means for gene functional study and new drug target identification. Although considerable progress has been made recently in understanding how the RNAi pathway mediates gene silencing, the design of potent siRNAs remains challenging. RESULTS: We propose a simple linear model combining basic features of siRNA sequences for siRNA efficacy prediction. Trained and tested on a large dataset of siRNA sequences made recently available, it performs as well as more complex state-of-the-art models in terms of potency prediction accuracy, with the advantage of being directly interpretable. The analysis of this linear model allows us to detect and quantify the effect of nucleotide preferences at particular positions, including previously known and new observations. We also detect and quantify a strong propensity of potent siRNAs to contain short asymmetric motifs in their sequence, and show that, surprisingly, these motifs alone contain at least as much relevant information for potency prediction as the nucleotide preferences for particular positions. CONCLUSION: The model proposed for prediction of siRNA potency is as accurate as a state-of-the-art nonlinear model and is easily interpretable in terms of biological features. It is freely available on the web a
    • …
    corecore