10 research outputs found

    Increasing the lensing figure of merit through higher order convergence moments

    Get PDF
    The unprecedented quality, the increased data set, and the wide area of ongoing and near future weak lensing surveys allows one to move beyond the standard two points statistics, thus making it worthwhile to investigate higher order probes. As an interesting step toward this direction, we explore the use of higher order moments (HOM) of the convergence field as a way to increase the lensing figure of merit (FoM). To this end, we rely on simulated convergence to first show that HOM can be measured and calibrated so that it is indeed possible to predict them for a given cosmological model provided suitable nuisance parameters are introduced and then marginalized over. We then forecast the accuracy on cosmological parameters from the use of HOM alone and in combination with standard shear power spectra tomography. It turns out that HOM allow one to break some common degeneracies, thus significantly boosting the overall FoM. We also qualitatively discuss possible systematics and how they can be dealt with

    Minkowski Functionals of Convergence Maps and the Lensing Figure of Merit

    Full text link
    Minkowski functionals (MFs) quantify the topological properties of a given field probing its departure from Gaussianity. We investigate their use on lensing convergence maps in order to see whether they can provide further insights on the underlying cosmology with respect to the standard second-order statistics, i.e., cosmic shear tomography. To this end, we first present a method to match theoretical predictions with measured MFs taking care of the shape noise, imperfections in the map reconstruction, and inaccurate description of the nonlinearities in the matter power spectrum and bispectrum. We validate this method against simulated maps reconstructed from shear fields generated by the MICE simulation. We then perform a Fisher matrix analysis to forecast the accuracy on cosmological parameters from a joint MFs and shear tomography analysis. It turns out that MFs are indeed helpful to break the Ωm\Omega_{\rm m}--σ8\sigma_8 degeneracy thus generating a sort of chain reaction leading to an overall increase of the Figure of Merit.Comment: 16 pages, 5 figures. Matches published version in PR

    Prototype LBT/LUCI ObsCore table

    Get PDF
    This document presents the first prototype of an IVOA compliant ObsCore table of proper raw data from LBT/LUCI to be published and shared among the astronomical community through both the Table Access Protocol (TAP-1.x) and the Simple Image Access Protocol version 2 (SIAP-2.0)

    Improving lensing cluster mass estimate with flexion

    No full text
    Gravitational lensing has long been considered as a valuable tool to determine the total mass of galaxy clusters. The shear profile, as inferred from the statistics of ellipticity of background galaxies, allows us to probe the cluster intermediate and outer regions, thus determining the virial mass estimate. However, the mass sheet degeneracy and the need for a large number of background galaxies motivate the search for alternative tracers which can break the degeneracy among model parameters and hence improve the accuracy of the mass estimate. Lensing flexion, i.e. the third derivative of the lensing potential, has been suggested as a good answer to the above quest since it probes the details of the mass profile. We investigate here whether this is indeed the case considering jointly using weak lensing, magnification and flexion. We use a Fisher matrix analysis to forecast the relative improvement in the mass accuracy for different assumptions on the shear and flexion signal-to- noise (S/N) ratio also varying the cluster mass, redshift, and ellipticity. It turns out that the error on the cluster mass may be reduced up to a factor of ˜2 for reasonable values of the flexion S/N ratio. As a general result, we get that the improvement in mass accuracy is larger for more flattened haloes, but it extracting general trends is difficult because of the many parameters at play. We nevertheless find that flexion is as efficient as magnification to increase the accuracy in both mass and concentration determination

    The renal Fanconi syndrome in cystinosis: pathogenic insights and therapeutic perspectives.

    No full text
    Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders. It is caused by a defect in the lysosomal cystine transporter, cystinosin, which results in an accumulation of cystine in all organs. Despite the ubiquitous expression of cystinosin, a renal Fanconi syndrome is often the first manifestation of cystinosis, usually presenting within the first year of life and characterized by the early and severe dysfunction of proximal tubule cells, highlighting the unique vulnerability of this cell type. The current therapy for cystinosis, cysteamine, facilitates lysosomal cystine clearance and greatly delays progression to kidney failure but is unable to correct the Fanconi syndrome. This Review summarizes decades of studies that have fostered a better understanding of the pathogenesis of the renal Fanconi syndrome associated with cystinosis. These studies have unraveled some of the early molecular changes that occur before the onset of tubular atrophy and identified a role for cystinosin beyond cystine transport, in endolysosomal trafficking and proteolysis, lysosomal clearance, autophagy and the regulation of energy balance. These studies have also led to the identification of new potential therapeutic targets and here, we outline the potential role of stem cell therapy for cystinosis and provide insights into the mechanism of haematopoietic stem cell-mediated kidney protection

    The renal Fanconi syndrome in cystinosis: pathogenic insights and therapeutic perspectives

    No full text
    corecore