448 research outputs found

    M-SrFe12O19 and ferrihydrite-like ultrathin nanoplatelets as building blocks for permanent magnets: HAADF-STEM study and magnetic properties

    Get PDF
    Mixtures of M-type strontium hexaferrite (M-SrFe12O19) and ferrihydrite-like particles were prepared by a microwave-assisted hydrothermal process at 200 °C with heating rates in the range 40–50 °C min-1. The particles exhibited a platelet shape with a diameter comprised between 20 and 200 nm and a thickness between 2 and 5 nm. HAADF-STEM observations and EDS analysis were carried out for a better understanding of nucleation and growth process. EDS showed that most of the particles contained Sr and HAADF-STEM revealed that very thin particles with a hexaferrite core extending over less than a unit cell and with surface disorder crystallized along with well crystallized hexaferrite and defect free ferrihydrite particles. The symmetric multilayer structures (SRS) of the ultrathin particles suggested that the nucleation step of the hexaferrite particles involved clusters containing Sr atoms. In comparison with the M-SrFe12O19 micrometer sized platelets prepared with heating rate of 25 °C min-1, the mixtures of ultrathin hexaferrite- and ferrihydrite-like particles combined after annealing a higher coercivity reaching 465 kA m-1 thanks to the smaller initial particle size and a high magnetization reaching 65 A m2 kg-1 thanks to a limited amount of hematite

    An implicit method for radiative transfer with the diffusion approximation in SPH

    Full text link
    An implicit method for radiative transfer in SPH is described. The diffusion approximation is used, and the hydrodynamic calculations are performed by a fully three--dimensional SPH code. Instead of the energy equation of state for an ideal gas, various energy states and the dissociation of hydrogen molecules are considered in the energy calculation for a more realistic temperature and pressure determination. In order to test the implicit code, we have performed non--isothermal collapse simulations of a centrally condensed cloud, and have compared our results with those of finite difference calculations performed by MB93. The results produced by the two completely different numerical methods agree well with each other.Comment: 25 pages, 9 figure

    Tuning complex shapes in Pt(0) nanoparticles : from cubic dendrites to five-fold stars

    Get PDF
    A platinum star performance: Quasi-single-crystalline Pt nanoparticles with peculiar morphologies—cubic dendrites, planar tripods, and fivefold stars—were synthesized in high yield. Shape selectivity was achieved by finely tuning the growth kinetics under a dihydrogen atmosphere

    Chemical Ordering in Bimetallic FeCo Nanoparticles: From a Direct Chemical Synthesis to Application As Efficient High-Frequency Magnetic Material

    Get PDF
    Single-crystalline FeCo nanoparticles with tunable size and shape were prepared by co-decomposing two metal-amide precursors under mild conditions. The nature of the ligands introduced in this organometallic synthesis drastically affects the reactivity of the precursors and, thus, the chemical distribution within the nanoparticles. The presence of the B2 short-range order was evidenced in FeCo nanoparticles prepared in the presence of HDAHCl ligands, combining 57 Fe Mössbauer, zero-field 59 Co ferromagnetic nuclear resonance (FNR), and X-ray diffraction studies. This is the first time that the B2 structure is directly formed during synthesis without the need of any annealing step. The as-prepared nanoparticles exhibit magnetic properties comparable with the ones for the bulk (M s = 226 Am 2 ·kg -1 ). Composite magnetic materials prepared from these FeCo nanoparticles led to a successful proof-of-concept of the integration on inductor-based filters (27% enhancement of the inductance value at 100 MHz)

    Evolution of Linear Absorption and Nonlinear Optical Properties in V-Shaped Ruthenium(II)-Based Chromophores

    Get PDF
    In this article, we describe a series of complexes with electron-rich cis-{Ru^(II)(NH_3)_4}^(2+) centers coordinated to two pyridyl ligands bearing N-methyl/arylpyridinium electron-acceptor groups. These V-shaped dipolar species are new, extended members of a class of chromophores first reported by us (Coe, B. J. et al. J. Am. Chem. Soc. 2005, 127, 4845−4859). They have been isolated as their PF_6− salts and characterized by using various techniques including ^1H NMR and electronic absorption spectroscopies and cyclic voltammetry. Reversible Ru^(III/II) waves show that the new complexes are potentially redox-switchable chromophores. Single crystal X-ray structures have been obtained for four complex salts; three of these crystallize noncentrosymmetrically, but with the individual molecular dipoles aligned largely antiparallel. Very large molecular first hyperpolarizabilities ÎČ have been determined by using hyper-Rayleigh scattering (HRS) with an 800 nm laser and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d → π^* metal-to-ligand charge-transfer (MLCT) and π → π^* intraligand charge-transfer (ILCT) bands. The latter measurements afford total nonresonant ÎČ_0 responses as high as ca. 600 × 10^(−30) esu. These pseudo-C_(2v) chromophores show two substantial components of the ÎČ tensor, ÎČ_(zzz) and ÎČ_(zyy), although the relative significance of these varies with the physical method applied. According to HRS, ÎČ_(zzz) dominates in all cases, whereas the Stark analyses indicate that ÎČ_(zyy) is dominant in the shorter chromophores, but ÎČ_(zzz) and ÎČ_(zyy) are similar for the extended species. In contrast, finite field calculations predict that ÎČ_(zyy) is always the major component. Time-dependent density functional theory calculations predict increasing ILCT character for the nominally MLCT transitions and accompanying blue-shifts of the visible absorptions, as the ligand π-systems are extended. Such unusual behavior has also been observed with related 1D complexes (Coe, B. J. et al. J. Am. Chem. Soc. 2004, 126, 3880−3891)

    Monodisperse α-Fe2O3 Mesoporous Microspheres: One-Step NaCl-Assisted Microwave-Solvothermal Preparation, Size Control and Photocatalytic Property

    Get PDF
    A simple one-step NaCl-assisted microwave-solvothermal method has been developed for the preparation of monodisperse α-Fe2O3 mesoporous microspheres. In this approach, Fe(NO3)3 · 9H2O is used as the iron source, and polyvinylpyrrolidone (PVP) acts as a surfactant in the presence of NaCl in mixed solvents of H2O and ethanol. Under the present experimental conditions, monodisperse α-Fe2O3 mesoporous microspheres can form via oriented attachment of α-Fe2O3 nanocrystals. One of the advantages of this method is that the size of α-Fe2O3 mesoporous microspheres can be adjusted in the range from ca. 170 to ca. 260 nm by changing the experimental parameters. High photocatalytic activities in the degradation of salicylic acid are observed for α-Fe2O3 mesoporous microspheres with different specific surface areas

    Characterization of a dual-affinity nitrate transporter MtNRT1.3 in the model legume Medicago truncatula

    Get PDF
    Primary root growth in the absence or presence of exogenous NO(3)(-) was studied by a quantitative genetic approach in a recombinant inbred line (RIL) population of Medicago truncatula. A quantitative trait locus (QTL) on chromosome 5 appeared to be particularly relevant because it was seen in both N-free medium (LOD score 5.7; R(2)=13.7) and medium supplied with NO(3)(-) (LOD score, 9.5; R(2)=21.1) which indicates that it would be independent of the general nutritional status. Due to its localization exactly at the peak of this QTL, the putative NRT1-NO(3)(-) transporter (Medtr5g093170.1), closely related to Arabidopsis AtNRT1.3, a putative low-affinity nitrate transporter, appeared to be a significant candidate involved in the control of primary root growth and NO(3)(-) sensing. Functional characterization in Xenopus oocytes using both electrophysiological and (15)NO(3)(-) uptake approaches showed that Medtr5g093170.1, named MtNRT1.3, encodes a dual-affinity NO(3)(-) transporter similar to the AtNRT1.1 \u27transceptor\u27 in Arabidopsis. MtNRT1.3 expression is developmentally regulated in roots, with increasing expression after completion of germination in N-free medium. In contrast to members of the NRT1 superfamily characterized so far, MtNRT1.3 is environmentally up-regulated by the absence of NO(3)(-) and down-regulated by the addition of the ion to the roots. Split-root experiments showed that the increased expression stimulated by the absence of NO(3)(-) was not the result of a systemic signalling of plant N status. The results suggest that MtNRT1.3 is involved in the response to N limitation, which increases the ability of the plant to acquire NO(3)(-) under N-limiting conditions

    Acquiring a pet dog significantly reduces stress of primary carers for children with autism spectrum disorder: a prospective case control study

    Get PDF
    This study describes the impact of pet dogs on stress of primary carers of children with Autism Spectrum Disorder (ASD). Stress levels of 38 primary carers acquiring a dog and 24 controls not acquiring a dog were sampled at: Pre-intervention (17 weeks before acquiring a dog), post-intervention (3–10 weeks after acquisition) and follow-up (25–40 weeks after acquisition), using the Parenting Stress Index. Analysis revealed significant improvements in the intervention compared to the control group for Total Stress, Parental Distress and Difficult Child. A significant number of parents in the intervention group moved from clinically high to normal levels of Parental Distress. The results highlight the potential of pet dogs to reduce stress in primary carers of children with an ASD
    • 

    corecore