515 research outputs found

    Synergistic effect of acetic acid and NOXfor objects made of lead and its alloys; Indoor corrosive environments in museums and depositories

    Get PDF
    Complex corrosion simulation to evaluate synergistic effect have to cover large number of factors. To do so, environmental and corrosion datasets collected by monitoring sites of interest have been used to tailor complex artificial ageing of lead and lead alloys, using lead, tin and tin-lead coupons. Material composition was based on objects of interest which are tin-lead alloy based although naming lead objects is used widespread for vast of them. To evaluate results corrosion rate based on weight loss, phase composition of corrosion product and colour change of the coupon surface were utilized. For thin corrosion layers formed micro Raman and FTIR did not provide suitable results, and GIXRD have been used. Although limited number of conditions were used for the simulations, synergistic effect was observed for lead under specific conditions. Synergistic effect do occur on lead when exposed to NOX and acetic acid fumes of relatively low concentrations (18 μg·m-3 and 500 ppb respectively). In addition, there is grouping of colourimetric data collected according to test regimes-phase composition of corrosion product respectively. This information albeit preliminary suggests that colourimetric spectroscopy may be suitable as fast and easy corrosion monitoring

    Microstructural characterization of dental zinc phosphate cements using combined small angle neutron scattering and microfocus X-ray computed tomography

    Get PDF
    Objective To characterize the microstructure of two zinc phosphate cement formulations in order to investigate the role of liquid/solid ratio and composition of powder component, on the developed porosity and, consequently, on compressive strength. Methods X-ray powder diffraction with the Rietveld method was used to study the phase composition of zinc oxide powder and cements. Powder component and cement microstructure were investigated with scanning electron microscopy. Small angle neutron scattering (SANS) and microfocus X-ray computed tomography (XmCT) were together employed to characterize porosity and microstructure of dental cements. Compressive strength tests were performed to evaluate their mechanical performance. Results The beneficial effects obtained by the addition of Al, Mg and B to modulate powder reactivity were mitigated by the crystallization of a Zn aluminate phase not involved in the cement setting reaction. Both cements showed spherical pores with a bimodal distribution at the micro/nano-scale. Pores, containing a low density gel-like phase, developed through segregation of liquid during setting. Increasing liquid/solid ratio from 0.378 to 0.571, increased both SANS and XmCT-derived specific surface area (by 56% and 22%, respectively), porosity (XmCT-derived porosity increased from 3.8% to 5.2%), the relative fraction of large pores ≥50 ÎĽm, decreased compressive strength from 50 Â± 3 MPa to 39 Â± 3 MPa, and favored microstructural and compositional inhomogeneities. Significance Explain aspects of powder design affecting the setting reaction and, in turn, cement performance, to help in optimizing cement formulation. The mechanism behind development of porosity and specific surface area explains mechanical performance, and processes such as erosion and fluoride release/uptake

    Microstructural characterization of dental zinc phosphate cements using combined small angle neutron scattering and microfocus X-ray computed tomography.

    Get PDF
    Abstract Objective To characterize the microstructure of two zinc phosphate cement formulations in order to investigate the role of liquid/solid ratio and composition of powder component, on the developed porosity and, consequently, on compressive strength. Methods X-ray powder diffraction with the Rietveld method was used to study the phase composition of zinc oxide powder and cements. Powder component and cement microstructure were investigated with scanning electron microscopy. Small angle neutron scattering (SANS) and microfocus X-ray computed tomography (XmCT) were together employed to characterize porosity and microstructure of dental cements. Compressive strength tests were performed to evaluate their mechanical performance. Results The beneficial effects obtained by the addition of Al, Mg and B to modulate powder reactivity were mitigated by the crystallization of a Zn aluminate phase not involved in the cement setting reaction. Both cements showed spherical pores with a bimodal distribution at the micro/nano-scale. Pores, containing a low density gel-like phase, developed through segregation of liquid during setting. Increasing liquid/solid ratio from 0.378 to 0.571, increased both SANS and XmCT-derived specific surface area (by 56% and 22%, respectively), porosity (XmCT-derived porosity increased from 3.8% to 5.2%), the relative fraction of large pores ≥50 μm, decreased compressive strength from 50 ± 3 MPa to 39 ± 3 MPa, and favored microstructural and compositional inhomogeneities. Significance Explain aspects of powder design affecting the setting reaction and, in turn, cement performance, to help in optimizing cement formulation. The mechanism behind development of porosity and specific surface area explains mechanical performance, and processes such as erosion and fluoride release/uptake

    Virological surveillance of SARS-CoV-2 in an Italian northern area: Comparison of real time RT PCR cycle threshold (CT) values in three epidemic periods

    Get PDF
    Aim of the study was to investigate the differences in Ct values in nasopharingeal swabs collected in three SARS-CoV-2 epidemic periods: first one from February 23 to March 25 (14 days from lockdown started on March 11); the second one from March 26 to May 18 (14 days from the end of strict lockdown on May 4) and the third one from May 19 until June 15. Viral RNA was detected in nasopharyngeal swabs obtained both from inpatients and outpatients. COVID-19 infection was confirmed according to the Ct values for N1 and N2 genes ascertained by Real-Time RT-PCR assay as described by the CDC. We calculated the prevalence of nasopharyngeal swabs tested positive for SARS-CoV-2, the mean and median of the Cts and the percentage of samples equal or below the Ct value of 25 in the 3 periods considered. The average value of Ct increased, going from 24.80 in the first epidemic period to 26.64 in the second period to 28.50 in the third period (p <0.001). The percentage of samples with Ct lower than or equal to 25 also decreased sharply from 54.7% to 20.0%. These findings need to be integrated with epidemiological and clinical data. (www.actabiomedica.it)

    Sphingosine-1-phosphate (S1P) impacts presynaptic functions by regulating synapsin i localization in the presynaptic compartment

    Get PDF
    Growing evidence indicates that sphingosine-1-P (S1P) upregulates glutamate secretion in hippocampal neurons. However, the molecular mechanisms through which S1P enhances excitatory activity remain largely undefined. The aim of this study was to identify presynaptic targets of S1P action controlling exocytosis. Confocal analysis of rat hippocampal neurons showed that S1P applied at nanomolar concentration alters the distribution of Synapsin I (SynI), a presynaptic phosphoprotein that controls the availability of synaptic vesicles for exocytosis. S1P induced SynI relocation to extrasynaptic regions of mature neurons, as well as SynI dispersion from synaptic vesicle clusters present at axonal growth cones of developing neurons. S1P-induced SynI relocation occurred in a Ca2+- independent but ERK-dependent manner, likely through the activation of S1P3 receptors, as it was prevented by the S1P3 receptor selective antagonist CAY1044 and in neurons in which S1P3 receptor was silenced. Our recent evidence indicates that microvesicles (MVs) released by microglia enhance the metabolism of endogenous sphingolipids in neurons and stimulate excitatory transmission. We therefore investigated whether MVs affect SynI distribution and whether endogenous S1P could be involved in the process. Analysis of SynI immunoreactivity showed that exposure to microglial MVs induces SynI mobilization at presynaptic sites and growth cones, whereas the use of inhibitors of sphingolipid cascade identified S1P as the sphingolipid mediating SynI redistribution. Our data represent the first demonstration that S1P induces SynI mobilization from synapses, thereby indicating the phosphoprotein as a novel target through which S1P controls exocytosis. Significance Statement Growing evidence indicates that the bioactive lipid sphingosine and its metabolite sphingosine-1-P (S1P) stimulate excitatory transmission. While it has been recently clarified that sphingosine influences directly the exocytotic machinery by activating the synaptic vesicle protein VAMP2 to form SNARE fusion complexes, the molecular mechanism by which S1P promotes neurotransmission remained largely undefined. In this study, we identify Synapsin I, a presynaptic phosphoprotein involved in the control of availability of synaptic vesicles for exocytosis, as the key target of S1P action. In addition, we provide evidence that S1P can be produced at mature axon terminals as well as at immature growth cones in response to microglia-derived signals, which may be important to stabilize nascent synapses and to restore or potentiate transmission

    Measurement of event shapes in deep inelastic scattering at HERA

    Get PDF
    Inclusive event-shape variables have been measured in the current region of the Breit frame for neutral current deep inelastic ep scattering using an integrated luminosity of 45.0 pb^-1 collected with the ZEUS detector at HERA. The variables studied included thrust, jet broadening and invariant jet mass. The kinematic range covered was 10 < Q^2 < 20,480 GeV^2 and 6.10^-4 < x < 0.6, where Q^2 is the virtuality of the exchanged boson and x is the Bjorken variable. The Q dependence of the shape variables has been used in conjunction with NLO perturbative calculations and the Dokshitzer-Webber non-perturbative corrections (`power corrections') to investigate the validity of this approach.Comment: 7+25 pages, 6 figure

    Adjuvant trastuzumab in the treatment of her-2-positive early breast cancer: a meta-analysis of published randomized trials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancer is the most common cancer in women in the U.S. and Western Europe. Amplification of the her-2/neu gene occurs in approximately 25% of invasive ductal carcinomas of the breast. The first HER-2/neu-targeted approach to reach the clinic was trastuzumab, a humanized monoclonal antibody directed against the extracellular domain of the HER-2/neu protein. Trastuzumab therapy prolongs the survival of patients with metastático HER-2/neu-overexpressing breast cancer when combined with chemotherapy and has recently been demonstrated to lead to dramatic improvements in disease-free survival when used in the adjuvant therapy setting in combination with or following chemotherapy. Here, we performed a meta-analysis of completed clinical trials of adjuvant trastuzumab in the adjuvant setting. Survival, recurrence, brain metastases, cardiotoxicity and directions for future research are discussed.</p> <p>Methods</p> <p>A meta-analysis of randomized controlled trials (RCT) was performed comparing adjuvant trastuzumab treatment for HER2-positive early breast cancer (EBC) to observation. The MEDLINE, EMBASE, CANCERLIT and Cochrane Library databases, and abstracts published in the annual proceedings were systematically searched for evidence. Relevant reports were reviewed by two reviewers independently and the references from these reports were searched for additional trials, using guidelines set by QUOROM statement criteria.</p> <p>Results</p> <p>Pooled results from that five randomized trials of adjuvant Trastuzumab showed a significant reduction of mortality (p < 0.00001), recurrence (p < 0.00001), metastases rates (p < 0.00001) and second tumors other than breast cancer (p = 0.007) as compared to no adjuvant Trastuzumab patients. There were more grade III or IV cardiac toxicity after trastuzumab (203/4555 = 4.5%) versus no trastuzumab (86/4562 = 1.8%). The likelihood of cardiac toxicity was 2.45-fold higher (95% CI 1.89 – 3.16) in trastuzumab arms, however that result was associated with heterogeneity. The likelihood of brain metastases was 1.82-fold higher (95% CI 1.16 – 2.85) in patients who received trastuzumab.</p> <p>Conclusion</p> <p>The results from this meta-analysis are sufficiently compelling to consider 1 year of adjuvant trastuzumab treatment for women with HER-2-positive EBC based on the risk: benefit ratio demonstrated in these studies. Adequate assessment of HER-2/neu status is critical, and careful cardiac monitoring is warranted because of cardiac toxicity. Clinical trials should be designed to answer unsolved questions.</p

    Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA

    Get PDF
    Correlations between charged particles in deep inelastic ep scattering have been studied in the Breit frame with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in terms of the angular separation between current-region particles within a cone centred around the virtual photon axis. Long-range correlations between the current and target regions have also been measured. The data support predictions for the scaling behaviour of the angular correlations at high Q2 and for anti-correlations between the current and target regions over a large range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations and Monte Carlo models correctly describe the trends of the data at high Q2, but show quantitative discrepancies. The data show differences between the correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C
    • …
    corecore