1,088 research outputs found

    Role of etravirine in the management of treatment-experienced patients with human immunodeficiency virus type 1

    Get PDF
    Etravirine is an oral diarylpyrimidine compound, a second-generation human immunodeficiency virus type 1 (HIV-1) non-nucleoside reverse transcriptase inhibitor (NNRTI) with expanded antiviral activity against NNRTI-resistant HIV-1, to be used in combination therapy for treatment-experienced patients. Compared with first-generation NNRTIs, etravirine has a high genetic barrier to resistance, and is better tolerated without the neuropsychiatric and hepatic side effects of efavirenz and nevirapine, respectively. Its safety profile is comparable to placebo with the exception of rash, which has been mild and self-limited in the great majority of patients. In phase III clinical trials among treatment-experienced patients harboring NNRTI-resistant HIV-1, etravirine in combination with an optimized background regimen (OBR) that included ritonavir-boosted darunavir demonstrated superior antiviral activity than the control OBR. In addition, patients on the etravirine arm had fewer AIDS-defining conditions, hospitalizations, and lower mortality compared with the OBR control arm

    Agroecology in the curricula of the Faculty of Agricultural Sciences of the UNCUYO : contributions to the territorial planning

    Get PDF
    Fil: Studer, P. M.. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Departamento de Ingeniería AgrícolaFil: Viani, M. . Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Departamento de Ingeniería AgrícolaFil: Filippini, María Flavia. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Departamento de Ingeniería Agrícol

    Understanding Link Dynamics in Wireless Sensor Networks with Dynamically Steerable Directional Antennas

    Get PDF
    Abstract. By radiating the power in the direction of choice, electronicallyswitched directional (ESD) antennas can reduce network contention and avoid packet loss. There exists some ESD antennas for wireless sensor networks, but so far researchers have mainly evaluated their directionality. There are no studies regarding the link dynamics of ESD antennas, in particular not for indoor deployments and other scenarios where nodes are not necessarily in line of sight. Our long-term experiments confirm that previous findings that have demonstrated the dependence of angleof-arrival on channel frequency also hold for directional transmissions with ESD antennas. This is important for the design of protocols for wireless sensor networks with ESD antennas: the best antenna direction, i.e., the direction that leads to the highest packet reception rate and signal strength at the receiver, is not stable but varies over time and with the selected IEEE 802.15.4 channel. As this requires protocols to incorporate some form of adaptation, we present an intentionally simple and yet efficient mechanism for selecting the best antenna direction at run-time with an energy overhead below 2 % compared to standard omni-directional transmissions.

    Determination of thermal response of Carrara and Sneznikovsky marble used as building material

    Get PDF
    Physical weathering of marble, widely used as a cladding material on buildings, is one of the most common damaging mechanism caused by anisotropic thermal expansion of calcite grains. The extent of marble deterioration depends mainly on stone fabric and texture. Dry cuboids of Carrara marble and marble from Dolni Morava quarry were subjected to microscopic analysis and thermal cycling, to determine the thermal expansion related to stone fabric and predominant lattice orientation of grains (i.e. texture)

    Microstructural characterization of dental zinc phosphate cements using combined small angle neutron scattering and microfocus X-ray computed tomography

    Get PDF
    Objective To characterize the microstructure of two zinc phosphate cement formulations in order to investigate the role of liquid/solid ratio and composition of powder component, on the developed porosity and, consequently, on compressive strength. Methods X-ray powder diffraction with the Rietveld method was used to study the phase composition of zinc oxide powder and cements. Powder component and cement microstructure were investigated with scanning electron microscopy. Small angle neutron scattering (SANS) and microfocus X-ray computed tomography (XmCT) were together employed to characterize porosity and microstructure of dental cements. Compressive strength tests were performed to evaluate their mechanical performance. Results The beneficial effects obtained by the addition of Al, Mg and B to modulate powder reactivity were mitigated by the crystallization of a Zn aluminate phase not involved in the cement setting reaction. Both cements showed spherical pores with a bimodal distribution at the micro/nano-scale. Pores, containing a low density gel-like phase, developed through segregation of liquid during setting. Increasing liquid/solid ratio from 0.378 to 0.571, increased both SANS and XmCT-derived specific surface area (by 56% and 22%, respectively), porosity (XmCT-derived porosity increased from 3.8% to 5.2%), the relative fraction of large pores ≥50 Î¼m, decreased compressive strength from 50 Â± 3 MPa to 39 Â± 3 MPa, and favored microstructural and compositional inhomogeneities. Significance Explain aspects of powder design affecting the setting reaction and, in turn, cement performance, to help in optimizing cement formulation. The mechanism behind development of porosity and specific surface area explains mechanical performance, and processes such as erosion and fluoride release/uptake

    Fieldtrips and Virtual Tours as Geotourism Resources: Examples from the Sesia Val Grande UNESCO Global Geopark (NW Italy)

    Get PDF
    In the 20th anniversary year of the European Geopark Network, and 5 years on from the receipt of the UNESCO label for the geoparks, this research focuses on geotourism contents and solutions within one of the most recently designated geoparks, admitted for membership in 2013: the Sesia Val Grande UNESCO Global Geopark (Western Italian Alps). The main aim of this paper is to corroborate the use of fieldtrips and virtual tours as resources for geotourism. The analysis is developed according to: i) geodiversity and geoheritage of the geopark territory; ii) different approaches for planning fieldtrip and virtual tours. The lists of 18 geotrails, 68 geosites and 13 off-site geoheritage elements (e.g., museums, geolabs) are provided. Then, seven trails were selected as a mirror of the geodiversity and as container of on-site and off-site geoheritage within the geopark. They were described to highlight the different approaches that were implemented for their valorization. Most of the geotrails are equipped with panels, and supported by the presence of thematic laboratories or sections in museums. A multidisciplinary approach (e.g., history, ecology) is applied to some geotrails, and a few of them are translated into virtual tours. The variety of geosciences contents of the geopark territory is hence viewed as richness, in term of high geodiversity, but also in term of diversification for its valorization

    Preliminary study of the pozzolanic activity of dumped mine wastes obtained from the North Bohemian basin in the Czech Republic

    Get PDF
    Three dumped raw materials, a tuff and two bentonites, obtained from two mining sites at the North Bohemian basin in the Czech Republic, have been studied in order to evaluate them as pozzolanic admixtures in lime mortars for employment in restoration of cultural heritage objects. After thermal activation (800 °C; 5 h), their pozzolanic properties were compared with those of commercial metakaolin. Quantitative phase analysis with the Rietveld method from X-ray powder diffraction patterns, morphological observations, as well as the Frattini and the modified Chapelle tests were performed. In addition, lime mortars, incorporating the fired materials, were prepared and subjected to simultaneous thermal analysis after a 28-day initial curing (20 ± 1 °C; 60 ± 5 % RH). The results showed that all three materials possess pozzolanic activity. However, when employed in lime mortars they did not result in formation of pozzolanic reaction products. Two methods were proposed to improve their reactivity; grinding to obtain finer particle size and removal of quartz content where necessary

    Synthetic calcium carbonate improves the effectiveness of treatments with nanolime to contrast decay in highly porous limestone

    Get PDF
    Three synthetized polymorphs of calcium carbonate have been tested in combination with the suspension of nanolime particles as potential consolidating agents for contrasting stone decay and overcome some of the limitations of nanolime agents when applied to substrates with large porosity. The modifications induced in the pore network of the Maastricht limestone were analyzed with microscopy and in a non-invasive fashion with small angle neutron scattering and synchrotron radiation micro-computed tomography. A reduction in porosity and pore accessibility at the micrometric scale was detected with the latter technique, and ascribed to the improved pore-filling capacity of the consolidation agent containing CaCO3 particles. These were found to be effectively bound to the carbonated nanolime, strengthening the pore-matrix microstructure. Penetration depth and positive effect on porosity were found to depend on the particle size and shape. Absence of significant changes in the fractal nature of the pore surface at the nanoscale, was interpreted as indication of the negligible contribution of nanolime-based materials in the consolidation of stones with large porosity. However, the results indicate that in such cases, their effectiveness may be enhanced when used in combination with CaCO3 particles, owing to the synergic effect of chemical/structural compatibility and particle size distribution

    A single case report of granular cell tumor of the tongue successfully treated through 445 nm diode laser

    Get PDF
    Oral granular cell tumor (GCT) is a relatively rare, benign lesion that can easily be misdiagnosed. Particularly, the presence of pseudoepitheliomatous hyperplasia might, in some cases, lead to the hypothesis of squamous cell carcinoma. Surgical excision is the treatment of choice. Recurrence has been reported in up to 15% of cases treated with conventional surgery. Here, we reported a case of GCT of the tongue in a young female patient, which was successfully treated through 445 nm diode laser excision. Laser surgery might reduce bleeding and postoperative pain and may be associated with more rapid healing. Particularly, the vaporization effect on remnant tissues could eliminate GCT cells on the surgical bed, thus hypothetically leading to a lower rate of recurrence. In the present case, complete healing occurred in 1 week, and no recurrence was observed after 6 months. Laser surgery also allows the possibility to obtain second intention healing. Possible laser-induced histopathological artifacts should be carefully considered
    • …
    corecore