594 research outputs found

    Wireless Sensor Network Deployment for Monitoring Soil Moisture Dynamics at the Field Scale

    Get PDF
    AbstractWe describe the deployment of a Wireless Sensor Network (WSN), composed of 135 soil moisture and 27 temperature sensors, in an apple tree orchard of about 5000 m2, located in the municipality of Cles, a small town in the Alpine region, northeastern Italy. The orchard is divided into three parcels each one subjected to a different irrigation schedule. The objective of the present work is to monitor soil moisture dynamics in the top soil to a detail, in both space and time, suitable to analyze the interplay between soil moisture dynamics and plant physiology. The deployment consists of 27 locations (verticals) connected by a multi hop WSN, each one equipped with 5 soil moisture sensors deployed at the depths of 10, 20, 30, 50 and 80 cm, and a temperature sensor at the depth of 20 cm. The proposed monitoring system is based on totally independent sensor nodes, which allow both real time and historic data management and are connected through an input/output interface to a WSN platform. Meteorological data are monitored by a weather station located at a distance of approximately 100 m from the experimental site.Great care has been posed to calibration of the capacitance sensors, both in the laboratory, with soil samples, and on site, after deployment, in order to minimize the noise caused by small oscillations in the input voltage and uncertainty in the calibration curves. In this work we report the results of a preliminary analysis on the data collected during the growing season 2009. We observed that the WSN greatly facilitates the collection of detailed measurements of soil moisture, thereby increasing the amount of information useful for exploring hydrological processes, but they should be used with care since the accuracy of collected data depends critically on the capability of the system to maintain constant the input voltage and on the reliability of calibration curves. Finally, we studied the spatial and temporal distribution of soil moisture in all the irrigated parcels, and explored how different irrigation schedules influence orchard's production

    Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites

    No full text
    Natural materials are renowned for their strength and toughness(1-5). Spider dragline silk has a breakage energy per unit weight two orders of magnitude greater than high tensile steel(1,6), and is representative of many other strong natural fibres(3,7,8). The abalone shell, a composite of calcium carbonate plates sandwiched between organic material, is 3,000 times more fracture resistant than a single crystal of the pure mineral(4,5). The organic component, comprising just a few per cent of the composite by weight(9), is thought to hold the key to nacre's fracture toughness(10,11). Ceramics laminated with organic material are more fracture resistant than non-laminated ceramics(11,12), but synthetic materials made of interlocking ceramic tablets bound by a few weight per cent of ordinary adhesives do not have a toughness comparable to nacre(13). We believe that the key to nacre's fracture resistance resides in the polymer adhesive, and here we reveal the properties of this adhesive by using the atomic force microscope(14) to stretch the organic molecules exposed on the surface of freshly cleaved nacre. The adhesive fibres elongate in a stepwise manner as folded domains or loops are pulled open. The elongation events occur for forces of a few hundred piconewtons, which are smaller than the forces of over a nanonewton required to break the polymer backbone in the threads. We suggest that this 'modular' elongation mechanism might prove to be quite general for conveying toughness to natural fibres and adhesives, and we predict that it might be found also in dragline silk

    Sphingolipids : key regulators of apoptosis and pivotal players in cancer drug resistance

    Get PDF
    Drug resistance elicited by cancer cells still constitutes a huge problem that frequently impairs the efficacy of both conventional and novel molecular therapies. Chemotherapy usually acts to induce apoptosis in cancer cells; therefore, the investigation of apoptosis control and of the mechanisms used by cancer cells to evade apoptosis could be translated in an improvement of therapies. Among many tools acquired by cancer cells to this end, the de-regulated synthesis and metabolism of sphingolipids have been well documented. Sphingolipids are known to play many structural and signalling roles in cells, as they are involved in the control of growth, survival, adhesion, and motility. In particular, in order to increase survival, cancer cells: (a) counteract the accumulation of ceramide that is endowed with pro-apoptotic potential and is induced by many drugs; (b) increase the synthesis of sphingosine-1-phosphate and glucosylceramide that are pro-survivals signals; (c) modify the synthesis and the metabolism of complex glycosphingolipids, particularly increasing the levels of modified species of gangliosides such as 9-O acetylated GD3 (\u3b1Neu5Ac(2-8)\u3b1Neu5Ac(2-3)\u3b2Gal(1-4)\u3b2Glc(1-1)Cer) or N-glycolyl GM3 (\u3b1Neu5Ac (2-3)\u3b2Gal(1-4)\u3b2Glc(1-1)Cer) and de-N-acetyl GM3 (NeuNH(2)\u3b2Gal(1-4)\u3b2Glc(1-1)Cer) endowed with anti-apoptotic roles and of globoside Gb3 related to a higher expression of the multidrug resistance gene MDR1. In light of this evidence, the employment of chemical or genetic approaches specifically targeting sphingolipid dysregulations appears a promising tool for the improvement of current chemotherapy efficacy

    Interactions of Uranium and Neptunium With Cementitious Materials Studied by XAFS

    Get PDF
    We have investigated the interaction of U(VI) and Np(V) actinide ions with cementitious materials that are relevant to nuclear waste repositories using X-Ray Absorption Fine Structure (XAFS) Spectroscopy. The actinide ions were individually loaded onto untreated as well as hydrothermally treated cements. The mixtures were then equilibrated at varying pH's for a period of approximately 6 months. In all cases uranium was introduced in the form of aqueous uranyl ion, UO{sub 2}{sup 2+}, and was observed to remain in this form based on the Near Edge (XANES) spectra. The uranium samples show evidence of interactions with both treated and untreated cements at all pH's, with uranyl interacting with the cement mineral phases (i.e., SiO{sub 2}) through an inner-sphere mechanism where oxygen atoms in the equatorial plane of the uranyl ion are shared with the mineral surface. In contact with the hydrothermally treated cement, the uranyl ions are also observed to form oligomeric species, proving that hydrothermal treatment of the concrete has a significant effect on the structural bonding characteristics of uranyl on the concrete. Neptunium was introduced as the neptunyl ion, NpO{sub 2}{sup +}, and was observed to undergo a reduction from Np(V) to Np(IV). Percent reduction was calculated from both component analysis of the XANES region and by curve fitting to the EXAFS region. Results from both methods were in good agreement and showed ca. 15% of Np(V) is reduced to Np(IV) in the fresh sample. In comparison, the other samples showed higher reduction rates of between 40% and 65%. Reduction was thus observed to occur over a relatively slow time scale based on XAFS data collected from a ''fresh'' sample (aged for 1 month). No Np-Np interactions were observed in the EXAFS spectra which makes surface precipitation of Np{sup 4+} phases an unlikely mechanism for sorption

    Solar cycle variation of νmax in helioseismic data and its implications for asteroseismology

    Get PDF
    The frequency, νmax, at which the envelope of pulsation power peaks for solar-like oscillators is an important quantity in asteroseismology. We measure νmax for the Sun using 25 yr of Sun-as-a-star Doppler velocity observations with the Birmingham Solar-Oscillations Network (BiSON), by fitting a simple model to binned power spectra of the data. We also apply the fit to Sun-as-a-star Doppler velocity data from Global Oscillation Network Group and Global Oscillations at Low Frequency, and photometry data from VIRGO/SPM on the ESA/NASA SOHO spacecraft. We discover a weak but nevertheless significant positive correlation of the solar νmax with solar activity. The uncovered shift between low and high activity, of ≃25 μHz\simeq 25\, \rm \mu Hz, translates to an uncertainty of 0.8 per cent in radius and 2.4 per cent in mass, based on direct use of asteroseismic scaling relations calibrated to the Sun. The mean νmax in the different data sets is also clearly offset in frequency. Our results flag the need for caution when using νmax in asteroseismology
    • …
    corecore