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Abstract

Modelling patterns in credit risk using survival analysis techniques have received consid-

erable and increasing attention over the past decade. In these models, the predictor of

the hazard of default is often expressed as a simple linear combination of the risk factors.

In this work, we discuss how these models can be enhanced using Generalised Additive

Models (GAMs). In the GAMs framework, the predictor is formulated as a combination

of flexible univariate functions of the risk factors. In this paper, we parametrise GAMs

for credit risk data in terms of penalised splines, outline the implementation via fre-

quentist and Bayesian MCMC methods, apply them to a large portfolio of credit card

accounts, and show how GAMs can be used to improve not only the application, be-

havioural and macro-economic components of survival models for credit risk data at

individual account level, but also the accuracy of predictions. From a practitioner point

of view, this work highlights that some accounts may actually become more (less) at-

tractive to the lender if flexible smooth functions are used whereas the same applicant

may be denied (accepted) a loan if the linearity assumption is forced.

Key words

OR in Banking; Risk Analysis; Smoothing; Multivariate Statistics; Predictions Accuracy.

Introduction

Modelling and predicting credit behaviour patterns is a topic of crucial importance to

lenders of credit card loans. In this context, survival models have attracted impressive

attention over the recent past, and are increasingly being used both in academia and

industry. Survival models offer several advantages over traditional statistical methods.

Some of these benefits are documented in Allison (2010), Andreeva (2006), Bellotti and

Crook (2013), Stepanova and Thomas (2002), Djeundje and Crook (2018) among others.

At its core, modelling credit risk data using survival analysis involves expressing a

major component of the expected hazard rate as a linear combination of the risk factors.

These risk factors comprise categorical variables (employment type, etc) as well as scale

variables (macro-economic variables, age, etc). While this simple linear assumption may

hold in some cases, it is often not flexible enough for some scale variables and as a
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result, standard survival models are unable to detect some important hidden patterns

in the data. This assumption of linearity can be relaxed through Generalised Additive

Models (GAMs).

GAMs is a simple yet attractive technique for extracting patterns from data. Unlike

standard survival models used in credit risk, GAMs involve a combination of flexible

smooth functions of the covariates. Early methodological work can be found in Hastie

and Tibshirani (1986, 1990), Friedman (1991) and Wood (2000, 2008) among others.

GAMs have also attracted strong attention over the recent past. Recent developments

including fast implementation algorithms for large datasets are detailed in Wood et al.

(2015, 2016). GAM techniques have been implemented successfully in various applica-

tion areas of statistics, including medicine, demography, environment, economics, etc

(Sapra, 2013; Drexler and Ainsworth, 2013; Djeundje, 2016). In the the credit risk con-

text, GAMs have been used to enhance predictive accuracy. For example, Berg (2006)

applied GAMs on firm-specific variables to enhance bankruptcy predictions, and this was

extended by Dakovica et al. (2010) with firm-specific time-varying covariates at yearly

time intervals. In the retail context, some investigations of GAM techniques in simple

cross-sectional logistic regressions have been reported; see for example Liu et al. (2009).

Although the application of survival models in credit risk data is growing rapidly,

the integration of GAM techniques into these models has received very little attention

in retail banking. The contribution of this paper is show how GAMs via penalised

splines can be used to improve not only the application, behavioural and macroeconomic

components of survival models for credit risk data at individual account level, but also

the accuracy of predictions. Simultaneously, we also show that it may not be appropriate

to apply GAMs blindly to all covariates; we demonstrate this by comparing the increased

predictive accuracy when a GAM specification is applied, on the one hand to behavioural

and macroeconomic variables and on the other hand to application variables. This is the

first time GAMs techniques have been applied to credit cards data for survival models.

In the paper we present two implementation methods of these models: the frequentist

approach and the Bayesian approach. Both methods can be implemented using standard

statistical software including R, SAS and STATA. The estimation algorithm arising from

the frequentist approach is generally faster. But conversely, the Bayesian approach

via MCMC provides the opportunity to explore the full posterior distributions of the

parameters of interest. We apply both methods to a large dataset of credit card accounts
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and show how they allow one to extract hidden patterns in the data and yield improved

predictions.

The paper is organised as follows. Section 1 outlines standard survival models as

applied to credit risk data and sets some notations for the rest of the paper. Section 2

presents GAMs for discrete time survival data with penalised splines. Section 3 describes

the implementation methods from frequentist and Bayesian points of view. Section 4

introduces the data that motivated this work and presents some applications of GAMs.

A simulation exercise is undertaken in Section 5 and we close with some concluding

remarks in Section 6.

1 Survival models for credit risk data

We consider a portfolio of n credit card accounts. The objective is to model the time to

default. Let Ti denote the true survival time for account i, 1 ≤ i ≤ n. In our applications,

time is measured in months, from the opening date of the accounts. Some accounts may

not experience default by the end of the study, in which case their survival times would

be right censored. We assume that censoring is non-informative. The discrete hazard

function of default for account i at duration time t is defined by

qi,t = Prob{Ti = t | Ti ≥ t} (1)

That is, qi,t represents the default rate associated with account i at time t, conditional

on the account still being active just before time t. The values taken by the hazard

function are driven by various factors. Some of these factors are observable but others

are not. This includes the application variables (i.e. variables obtained from the appli-

cation process), the behavioural variables (i.e. time-dependant and account-dependant

variables), and the macroeconomic conditions.

For a given account i, we will denote by Ui the 1× a vector of application variables,

and by Vi,t−to and Zi,t−to the vector of behavioral variables and macroeconomic variables

respectively, lagged (to) at time t. Since the macroeconomic conditions are the same for

all accounts observed at the same calendar time, the dependence of Zi,t−to on i is due

to the fact that accounts are opened at different points in calendar time. To quantify

the effects of these variables on the risk of default, a standard option is to use a link
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function (Allison, 2010; Therneau and Grambsch, 2000):

g(qi,t) = h0,t + Uiα + Vi,t−to β + Zi,t−to δ (2)

= h0,t +
a∑
k=1

αk × ui,k +
b∑

k=1

βk × vi,t−to,k +
m∑
k=1

δk × zi,t−to, k

In these expressions g represents the link function, h0,t is some baseline, and α =

(α1, ..., αa)
T is the a × 1 vector of unknown of regression coefficients associated with

the application variables; its components quantify the effect of the application variables

on the risk of default. Similarily, β = (β1, ..., βb)
T and δ = (δ1, ..., δm)T represent the

regression coefficients associated with the behavioural and the macroeconomic variables

respectively. To complete the model specification, some restrictions are often placed on

the shape of the baseline h0,t.

Denoting by αo the parameters that define the shape of h0,t, all the unknown param-

eters in the model can be estimated jointly by maximisation of the likelihood function

given by

L(αo,α,β, δ) ∝
n∏
i=1

τi∏
t=1

(qi,t)
yi,t × (1− qi,t)1−yi,t (3)

In this expression, yi,t denotes the indicator function taking value 1 if account i has

defaulted in month t and 0 otherwise; and τi represents the age of the account at the

time of default (if account i has defaulted) or at the end of the study (if account i is

censored).

2 GAMs for discrete time survival data using penalised splines

Model 2 assumes that each covariate is linearly associated with the predictor. This is a

strong assumption for scale variables. The GAMs approach relaxes this assumption. For

example, if the first application variable is a scale variable, then each component α1×ui,1
in Equation (2) is substituted by S(ui,1), where S(·) is a flexible smooth function.

Without loss of generality, we suppose that the first a1 application variables are

dummies and the other a − a1 application variables are scales. Also, let us assume

similar repartition of the behavioural and macroeconomic variables. The full GAMs
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extension of Equation (2) is as follows

g(qi,t) = h0,t

+
a1∑
k=1

αk × ui,k +
a∑

k=a1+1

Suk(ui,k)

+
b1∑
k=1

βk × vi,t−to,k +
b∑

k=b1+1

Svk(vi,t−to,k)

+
m1∑
k=1

δk × zi,t−to,k +
m∑

k=m1+1

Szk(zi,t−to,k)

(4)

where the Suk(·), Svk(·) and Szk(·) are unknown flexible smooth functions to be es-

timated. This extended expression assumes that the impact of each scale variable is

modelled using a flexible smooth function. In practice the assumption of simple lin-

earity may hold for some scale variables, in which case the smooth function would be

applied only on an appropriate subset of the scale variables. In Section 4 for example,

we shall investigate models involving smooth functions on application variables alone.

A natural question that emerges is how do we estimate the smooth function involved

in (4)? Indeed, the method should be flexible enough to capture hidden trends in

the data. A good candidate is the P-splines methodology of Eilers and Marx (1996).

This method shares several features with standard regressions. In particular, it involves

expressing a smooth function as a linear combination of a basis of B-splines:

Sw(x) =

cw∑
r=1

θw,r ×Bw,r(x) (5)

where Bw,r(·) are B-splines along the scale variable w, r is the index of the B-splines, cw

is the number of B-splines, and θw,r are unknown splines coefficients to be estimated.

Details on the estimation is given in Section 3 below.

Figure 1: B-splines along age.
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A B-spline can be described as a combination of truncated polynomials. An illustra-

tion of linear and cubic B-splines is shown on Figure 1. Each B-spline has a compact

support and this makes them advantageous over other spline bases. For a complete de-

scription of B-splines, we refer the reader to De Boor (1978) or Eilers and Marx (2010).

We use cubic B-splines in this paper; some motivations of this preference are discussed

by Green and Silverman (1995).

3 Estimation of GAMs

We want the smooth functions Sw(·) to be as flexible as possible in order to capture

hidden patterns in the data. However it is imperative to ensure that we do not over-fit the

data. An attractive way to achieve this is to penalise the differences in adjacent B-spline

coefficients; this is know as the method of penalised splines or simply P-splines (Eilers

and Marx, 1996; Wood, 2006). With this approach, B-splines with equi-spaced knots can

be used, and for each covariates w in equation (5), the number of B-splines cw is chosen

large enough so that there are enough B-splines to capture the important features in the

data while penalisation ensures smoothness.

In this paper, we implement GAM via penalised splines in two ways. First we follow

the frequentist approach based on the optimisation of the penalised likelihood, and

second, we use a Bayesian MCMC method. The former provides point estimates of the

parameters of interest whereas the latter gives access to the full posterior distributions

of the parameters. We can compare the estimates from the two methods.

3.1 Frequentist estimation

The penalised log-likelihood arising from (4) can be expressed as

`P = ` +
a∑

k=a1+1

λuk × P(θuk) +
b∑

k=b1+1

λvk × P(θvk) +
m∑

k=m1+1

λmk
× P(θmk

) (6)

where ` is the ordinary log-likelihood function arising from (2), λw is the smoothing

parameter associated with the scale variable w, and P(·) denotes the penalty function

acting on the spline coefficients to ensure smoothness. We use the second order difference

penalties in this paper, in which case P(·) is given by

P(θw) = (θw,3 − 2θw,2 + θw,1)
2 + · · · + (θw,cw − 2θw,cw−1 + θw,cw−2)2 (7)

7



For fixed values of the smoothing parameters, the value of the regression parameters

and splines coefficients that maximise the penalised log-likelihood (6) can be computed

via the penalized iteratively re-weighted least squares algorithm (Green and Silverman,

1995; Wood, 2008). For large datasets, more efficient algorithms can help to boost speed

and convergence properties as described in Wood et al. (2015, 2016).

So far, we have overlooked a very important issue: the choice of the smoothing

parameters. From the objective function (6), it can be seen that the λw’s quantify

the trade-off between fidelity to the data as measured by the log-likelihood, and the

smoothness of the model as measured by the difference penalty terms. Hence, the

smoothing parameters play a central role in the model specification and their choice

falls in the bias-variance trade-off paradigm. In practice, optimal values of the smoothing

parameters can be selected via an information metric such as the restricted maximum

likelihood (Wood, 2011) or the Akaike Information Criteria (AIC) defined by

AIC = Deviance + 2p, (8)

where p represents the effective dimension of the model.

The implementation of this procedure can be facilitated by using the mgcv package

in R (Wood, 2016). In particular, two functions are available in this package: gam() and

bam(). Both functions facilitate the estimations of a variety of flexible models (including

GAMs) the latter being a more efficient implementation specifically developed for large

datasets.

3.2 Estimation via Bayesian MCMC method

In the Bayesian paradigm, the unknown regression parameters and spline coefficients

are treated as random variables and have to be supplemented with appropriate prior

distributions. The prior distributions are often non-informative. But they can also be

specified so as to incorporate some external or expert judgements about the parameters

of interest or the default rates themselves.

For consistency with Section 3.1, we assume non-informative priors about the re-

gression parameters. For the splines coefficients however we impose smoothness. Thus,

following Lang and Brezger (2004), we replace the second order difference penalties in (7)

by their stochastic analogues (i.e. second-order random walks) as follows

θw,j ∼ N
(

2θw,j−1 − θw,j−2, σ
2
w

)
, (9)
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with diffuse prior for θw,1 and θw,2.

In this case, the amount of smoothness is controlled by the variance parameters σ2w,

which correspond to the inverse of the smoothing parameters in Section 3.1. These

variance parameters are unknown themselves. Thus, they are also treated as random

and hyper priors are assigned to them. A common choice of prior for such variance

parameters is a non-informative prior specified using the inverse Gamma distribution;

See for example Lang and Brezger (2004) and Crainiceanu et al. (2005).

With this in place, the regression parameters, variance parameters and spline co-

efficients can be investigated by Bayesian inference via MCMC simulations, and this

entails updating full conditionals of single parameters or blocks of parameters. However,

single-move steps, which update each parameter separately can suffer from problems

with convergence and mixing (Fahrmeir and Lang, 2001) especially in models compris-

ing a large number of unknown parameters. Thus, in this paper, MCMC samples were

generated and updated in blocks based on the Metropolis-Hasting algorithm with itera-

tive weighted least square proposals; see Gamerman (1997), Fahrmeir and Lang (2001),

Brezger and Lang (2006). This procedure can be implemented using BayesX, a software

package designed to fit structured additive regression models using MCMC (Brezger et

al., 2005).

4 Applying GAMs to a credit risk dataset

The dataset that motivated this work is a large sample of credit card accounts from

a major UK bank. It consists of more than 60,000 individual accounts opened from

2002 to 2011 on different books. The dataset contains several variables collected at the

time of application as well as behavioural variables collected monthly. In addition, some

macroeconomic variables were appended to the dataset.

In this analysis, an account is said to have ’defaulted’ if and when it became three

months in arrears. Note that the three missed payments need not to be in consecutive

months. We computed a minimum payment using constant parameters for each account

and so consistently throughout the period. Hence, whilst this definition is consistent

with that used in Djeundje and Crook (2018), it differs from that used for example by

the data provider.

These data lend themselves naturally into a survival analysis framework. In this

framework, an important tool for aggregate data exploration is the overall survival func-
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Figure 2: Survival curve.

tion (Kaplan and Meier, 1958). It allows one to visualise the fraction of accounts still

active at certain times after the opening date. The survival function for our dataset is

displayed in Figure 2. Several conclusions can be drawn. For example, it shows that the

probability of surviving the first year in this portfolio is about 90%. That is, nearly 10%

of the accounts have missed three payments or more during the first year. Similarly,

about 82% were able to avoid 3 missing payments during the first two years, and more

than 3
4 of the accounts were still active after the first three years.

Separate survival curves can also be constructed for different blocks of business; for

example by employment type within age groups. But this entails splitting the data

into different sub-blocks. As such, the Kaplan-Meir survival function is limited in its

ability to estimate the probability of default/survival adjusted for covariates. This can

be achieved using appropriate survival models.

Following Djeundje and Crook (2018) we split this dataset into three separate sets:

a training set, a retrospective test set and a prospective test set. The training set

comprises a random sample of 80% of the accounts opened from 2002 to 2008. We

use it to estimate the models. The retrospective test comprises the rest of the 20% of

accounts opened from 2002 to 2008, whereas the prospective test set consists of all the

accounts opened from 2009 onward. Thus, the prospective test set is out-of-sample and
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out-of-time relative to the training set, whereas the retrospective set is out-of-sample

but in-time. Both test sets are used to assess and compare the predictive performance

of the models.

The dataset contains a number of categorical and scale variables. The variables used

in this paper are those shown in Table 1. The application and behavioral variables were

calculated directly from the data supplied by the data provider, whereas the macroeco-

nomic variables are those of the Office of National Statistics in the UK, subject to some

scale and location adjustments.

Table 1: Risk factors used in this investigation.

Application variables

Age at application Numeric

Number of cards group Categorical (4 groups)

Employement type Categorical (5 groups)

Variable X Categorical (5 groups)

Behavioural variables

Repayment amount Numeric

% Time with one outstanding payment Numeric

% Time with two outstanding payments Numeric

Macroeconamic variables

Average wage earnings Numeric

Consumer confidence Numeric

Unemployement rate Numeric

In order to identify and quantify the impact of GAMs for credit risk data, a number

of models with various GAMs specifications were implemented. In this paper, we narrow

the presentation to those shown in Table 2. Each model in this table was fitted in two

ways. First, via maximisation of the penalised log-likelihood as described in Section 3.1;

and second, by Bayesian MCMC method as discussed in Section 3.2.

4.1 Models output

This section presents some of the main output from the models described in Table 2.

We start with Model0; that is the model without GAMs specification. The parameters

were estimated by maximum penalised likelihood and by MCMC simulations. In both

cases, the baseline was specified in terms of B-splines, and penalties were applied on

the spline coefficients to achieve smoothness. An illustration of the MCMC samples

from the posterior distribution of some of the baseline spline coefficients and regression
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Table 2: List of models.

Model code Description

Model0 model without GAMs specification

Model1 model with GAMs specification on application variables

Model2 model with GAMs specification on behavioral variables

Model3 model with GAMs specification on macroeconomic variables

Model4 model with GAMs specification on application, behavioral and macroeconomic variables

Each model listed in this table was implemented using the frequentist and Bayesian approaches. In addition to

these, models with GAMs specification on single variables were also investigated.

parameters is shown in Figure 3.

Figure 3: MCMC samples from the posterior distribution of some of the baseline spline

coefficients and regression parameters for Model0.
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A comparative summary of the parameters estimates is given in Table 3. This shows

that estimates from both methods are very similar and their signs are broadly as ex-

pected. For example, having a larger number of cards or repaying a larger amount are

associated with increased risk of default whereas increased consumer confidence is asso-

ciated with reduced risk; one possible explanation to this direction of the impact of the

repayment amount is that when people default their repayment amount is larger because

they are trying to pay off larger balances outstanding.

We now look at the ability of GAMs to capture patterns in the data. We start by the

marginal effects of the variable Age from each of our five models. These effects are shown

12



Table 3: Estimated parameters from Model0, i.e. without GAMs effects.

Maximum Penalised Likelihood Bayesian MCMC

Coefficient Std Error p-val Coefficient (mean) Std Dev

Application variables

Age at application -0.0164 0.0009 0.0000 -0.0164 0.0010

Number of cards, group B 0.0531 0.0224 0.0177 0.0528 0.0220

Number of cards, group C 0.1569 0.0248 0.0000 0.1574 0.0248

Number of cards, group D 0.1827 0.0909 0.0444 0.1805 0.0893

Variable X, group B 0.4012 0.0285 0.0000 0.4014 0.0282

Variable X, group C 0.4620 0.0336 0.0000 0.4623 0.0331

Variable X, group D 0.2024 0.0316 0.0000 0.2024 0.0318

Variable X, group E 0.3849 0.0314 0.0000 0.3850 0.0311

Employment code, group B 0.0653 0.0299 0.0288 0.0657 0.0294

Employment code, group C -0.3301 0.0577 0.0000 -0.3304 0.0570

Employment code, group D -0.0556 0.0319 0.0814 -0.0558 0.0323

Employment code, group E 0.1544 0.0266 0.0000 0.1544 0.0269

Behavioral variables

%time with one oustanding payment 3.9058 0.0620 0.0000 3.9058 0.0608

%time with two oustanding paymens 3.0611 0.1485 0.0000 3.0725 0.1504

Repayment amount 0.0647 0.0036 0.0000 0.0642 0.0037

Macroeconomic variables

Consumer confidence -0.0106 0.0014 0.0000 -0.0106 0.0014

Unemployement rate -0.0516 0.0143 0.0003 -0.0518 0.0143

Average wage earnings 0.0003 0.0011 0.7880 0.0003 0.0011

In both methods, the baseline were fitted using penalised splines via maximising the penalised likelihood and via
Bayesian method. Each behavioural and macroeconomic variable was lagged 6 months.

in Figure 4 with approximative 95% confidence bands. The panels on the left hand side

are based on maximising the penalised likelihood as described in Section 3.1 whereas

those on the right hand side are calculated from the MCMC samples. We recall that

Model0, Model2 and Model3 assume that the marginal effect of Age is linear; Model1 and

Model4 relax this assumption through GAMs specifications. A number of conclusions

can be drawn from these graphics. For example, the panels corresponding to Model1 and

Model4 show that, indeed, the shape of the marginal effect of Age is not linear. Overall,

as with Model0, the summary estimates of the marginal effects from the frequentist and

Bayesian methods are very similar. From now on, we shall omit most of the graphics

obtained from the Bayesian MCMC method.

Let us consider the marginal effects for repayment amount; these are shown on Fig-

ure 5. Model0, Model1 and Model3 assume a linear marginal effect for the repayment

amount. However, Model2 and Model4 do not make this restrictive assumption, and

their outputs demonstrate that the risk of default increases steadily only over the lower

values of repayment amounts and then become almost flat for larger values of repayment

amounts. Similar, yet distinct comments apply to the marginal effects of other vari-

ables in the models. See for example Figure 6 for the marginal effects of %time with

one outstanding payment, and in the Appendix Figure A1 for average wage earnings, or
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Figure 4: Marginal effects of age.
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Left: maximum penalised likelihood estimates. Right: empirical estimates from MCMC samples.

The marginal effect of age from models 2 & 3 are essentially the same as in Model0.
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Figure A2 for consumer confidence. In all cases the considerable deviation from linear-

ity implies that, if used in practical applications, some applicants may actually become

more attractive to the lender if a flexible spline-based function is used whereas the same

applicants may be denied a loan if a linear function is used.

Figure 5: Marginal effects of repayment amount.
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Figure 6: Marginal effects of %time with one outstanding payment.
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4.2 Implications for hazard functions

We now consider some implications of using a GAMs specification on the shape of the

hazard functions for a typical account. For illustration we consider accounts where the

borrower has one of five employment types. At each time point within each employment

type, we set the values of each covariate at its mean (for scale variables) and mode (for

15



categorical variables), and then calculated the predicted probabilities of default using the

estimated regression parameters and splines coefficients. An illustration of the outcome

is shown on Figure 7. Different observations can be made.

First, applying GAMs as in Model1, Model2, Model3 or Model4 might cause the

hazard relationship with time to differ between the models. In this paper that is what

we observe. Second we observe that employing GAMs on time varying covariates in this

case increases the probability of default at any duration time for any given employment

category. This is because the GAMs specification results in marginal effects (i.e. the Sw
in equation (4)) whose values for the time varying covariates are greater than those

when a linear function is chosen, at the mean or mode of each covariate. Third, we

also notice that employing GAMs on all scale variables results in greater variation over

time in the hazards. This can clearly be seen from employment type D. In this case the

use of GAMs on all variables (top line) results in the probability of default increasing

noticeably after month 12 whereas if a linear function is used (Model0) the probability

is almost constant. For employment type B the hazard declines more steeply over time

when a GAM is used rather than when a linear form is assumed.

4.3 Model assessment and comparison

In the previous section, we illustrated the ability of GAMs to extract patterns from the

data. In credit risk however, the focus is usually on predictions. In this section therefore

we compare the models in terms of overall quality and predictive power.

4.3.1 Overall model quality

In practice it is always possible to improve model fit by adding a new variable or more

splines into the model; but doing so can lead to over-fitting and poor predictions. A

penalty against model complexity allows one to avoid this problem. In particular, AIC

provides a measure of relative goodness of fit of a statistical model with a suitable

penalty term for complexity as shown in (8). In general, models with lower AIC would

be preferred.

Table 4 shows comparative AIC from our five models. A number of conclusions can

be drawn. First, all the four models with GAMs specification on one or many variables

outperform the standard model (i.e. Model0). The best model based on AIC statistics is

Model4, i.e. the model with GAMs specification simultaneously on Age, the behavioral
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Figure 7: Predicted probabilities of default for typical accounts based on the medi-

ans/modes of the covariates by employment type in the prospective test set.
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Left: predictions based on the penalised log-likelihood estimates of the spline coefficients and regression

parameters. Right: based on the MCMC estimates of the spline coefficients and regression parameters.
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variables and the macroeconomic variables. However, the largest contribution to the drop

in AIC is from the behavioral variables as revealed by AIC corresponding to Model2.

Nonetheless, allowing GAMs specification for Age or the macroeconomic variables also

improve the model significantly; see AICs from Model1 and Model3.

Table 4: Comparative AIC.

AIC Drop in AIC

Model0 (i.e. without GAMs) 139415 0

Model1 (i.e. GAMs on application variables) 139256 158

Model2 (i.e. GAMs on behavavioural variables ) 135967 3448

Model3 (i.e. GAMs on macroeconomic variables) 138999 416

Model4 (i.e. GAMs on appl., behav. and macroec. variables) 135378 4037

4.3.2 Comparing predictive performance

A standard method to compare the predictive performance of binary-response models

is to use the Receiver Operating Characteristic curve, also known as ROC curve. An

attractive feature of the ROC is that, besides the graph of the ROC curves themselves,

the accuracy of the models can be assessed by measuring the area under the curves.

Upon fitting each of our five models, the parameters and spline functions were used to

predict the probabilities of default for each account in the retrospective and prospective

test sets, and these probabilities were used to construct the ROC curves for both test

sets, separately. These curves are shown on Figure 8.

Table 5: Areas under the ROC curves.

Model0 Model1 Model2 Model3 Model4

Retrospective test set 0.733 0.732 0.773 0.731 0.771

Prospective test set 0.731 0.734 0.757 0.736 0.763

The conclusion is consistent across both test sets: models with GAMs specifica-

tion perform better than the standard model (i.e. Model0). In particular, the models

with GAMs specification on behavioural variables (i.e. Model2 and Model4) top the list.

This is confirmed by the areas under the ROC curves in Table 5.
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Figure 8: ROC curves.
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5 Simulation exercise

In the previous section, we have illustrated the effectiveness of GAMs for credit risk

data. However, the outputs presented were specific to the dataset being analysed. In

this section, we undertake a short simulation exercise to investigate the ability of GAMs

to enhance standard models. For computational reasons, we focus on three scale vari-

ables (Age, %time with one outstanding payment and Consumer confidence) and con-

sider six scenarios. Each scenario is determined by the underlying shapes of the “true”

marginal effect of these three variables. Our true marginal effects for the six scenarios

are displayed in Table 6.

Table 6: True marginal effects for Age (x1), %time with one outstanding payment (x2)

and Consumer confidence (x3) in our six scenarios.

For Age For Time with one outstanding For Consumer confidence

Scenario 1: S(x1) = −2× x1 S(x2) = 1.25x2 S(x3) = −2.5× x3
Scenario 2: S(x1) = −2x1 − (x1 − 30)3 S(x2) = 1.25× x2 S(x3) = −2.5× x3
Scenario 3: S(x1) = −2× x1 S(x2) = − exp(−7x2 + 2.1) S(x3) = −2.5× x3
Scenario 4: S(x1) = −2× x1 S(x2) = 1.25× x2 S(x3) = −2.5x3 + 0.75× sin(4πx3)

Scenario 5: S(x1) = −2x1 − (x1 − 30)3 S(x2) = − exp(−7x2 + 2.1) S(x3) = −2.5× x3
Scenario 6: S(x1) = −2x1 − (x1 − 30)3 S(x2) = 1.25× x2 S(x3) = −2.5x3 + 0.75× sin(4πx3)

Under each scenario, we proceed as follows.
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(i) Construct the linear predictor (using the marginal effects as specified in Table 6,

with the baseline set to that of Model0 fitted in Section 4) and calculate the

conditional monthly default probabilities for each account in the training dataset.

(ii) Simulate the conditional default indicators, and fit two models to these simulated

data: (a) the standard model without GAMs specification and (b) the flexible

model with GAMs specification on Age, %time with one outstanding payment and

Consumer confidence, simultaneously.

(iii) Repeat step (ii) 1000 times, and store the models summary statistics in each case.

Figure 9: Output summary of the simulation exercise. The vertical axis represents the

reduction in AIC from the standard models without GAMs specification to the flexible

models with GAMs specification.
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A summary of the AIC statistics from this exercise is shown on Figure 9. On these

graphics, the vertical axis represents the reduction in AIC from the standard models to

the GAMs counterparts. Thus, positive numbers indicate that GAMs specification is

broadly better than the standard linear specification. A general conclusion that emerges

from this simulation exercise is that, in essentially all six scenarios, models with GAMs
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specification provide a better description of the data. In particular, the output from

scenario 4 and scenario 6 highlight how using GAMs can yield a very large improvement

when some of the underlying true marginal effects are far from linear.

6 Concluding remarks

Generalised Additive Models (GAMs) is a simple, yet, powerful technique for identifying

hidden patterns in data. The main purpose of this work was to investigate if the standard

survival models currently used in retail banking can be enhanced via GAMs. Thus, in

the first half of the paper, we focussed on the parameterision of GAMs for discrete

time survival data in the credit risk context, and described how these models can be

implemented using frequentist and Bayesian MCMC methodologies. In the second half,

we applied GAMs to a dataset of credit card accounts and to simulated datasets and

found that, not only do GAMs significantly improve the overall quality of standard

survival models, but also, using GAMs yield more accurate predictions on out-of-sample

and out-of-time test sets.
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Appendix

Figure A1: Marginal effects of average wage earnings.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1
.0

−
0
.5

0
.0

0
.5

average wage earnings

S
(
a
v
e
ra

g
e
 w

a
g
e
 e

a
r
n
in

g
s
)

Model 0

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1
.0

−
0
.5

0
.0

0
.5

average wage earnings

S
(
a
v
e
ra

g
e
 w

a
g
e
 e

a
r
n
in

g
s
)

Model 3

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1
.0

−
0
.5

0
.0

0
.5

average wage earnings

S
(
a
v
e
ra

g
e
 w

a
g
e
 e

a
r
n
in

g
s
)

Model 4

Figure A2: Marginal effects of number of consumer confidence.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
0
.5

0
.0

0
.5

1
.0

consumer confidence

S
(
c
o
n
s
u
m

e
r
 c

o
n
fi
d
e
n
c
e
)

Model 0

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
0
.5

0
.0

0
.5

1
.0

consumer confidence

S
(
c
o
n
s
u
m

e
r
 c

o
n
fi
d
e
n
c
e
)

Model 3

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
0
.5

0
.0

0
.5

1
.0

consumer confidence

S
(
c
o
n
s
u
m

e
r
 c

o
n
fi
d
e
n
c
e
)

Model 4

22



Bibliography

Allison P. D. (2010) Survival analysis using SAS: A Practical Guide, Second Edition.

Cary, NC: SAS Institute Inc.

Andreeva G. (2006) European generic scoring models using survival analysis. The Journal

of Operational Research Society, 57, 1180-1187.

Berg D. (2006) Bankruptcy prediction by generalized additive models. Applied Stochastic

Models in Business and Industry, 23, 129–143.

Bellotti T. and Crook J. (2013) Forecasting and stress testing credit card default using

dynamic models. International Journal of Forecasting, 29, 563-574.

Brezger A. and Kneib T. and Lang S. (2005) Bayesx: Analyzing bayesian structural

additive regression models. Journal of Statistical Software, 14, 1-22.

Brezger A. and Lang S. (2006) Generalized Structured Additive Regression Based on

Bayesian P-Splines. Computational Statistics and Data Analysis, 50, 947-991.

Cox D. R. (1972) Regression models and life-tables (with discussion). Journal of Royal

Statistic Society, Series B, 74, 187-220.

Crainiceanu C. and Ruppert D. and Wand M. P. (2005) Bayesian Analysis for Penalized

Spline Regression Using WinBUGS Journal of Statistical Software, 14.

Dakovica R. and Czadoa C. and Bergb D. (2010) Bankruptcy prediction in Norway: a

comparison study. Applied Economics Letters, 17, 1739–1746.

De Boor C. (1978) A practical guide to splines. Springer.

Djeundje V. A. B. (2016) Systematic deviation in smooth mixed models for multi-level

longitudinal data. Statistical Methodology, 32, 203-217.

Djeundje V. A. B. and Crook J. (2018) Dynamic survival models with varying coefficients

for credit risks. To appear.

Eilers P. H. C. and Marx B. D. (1996) Flexible smoothing with B-splines and penalties

Statistical Science, 11, 89-121.

23



Eilers P. H. C. and Marx B. D. (2010) Splines, knots, and penalties Computational

Statistics, 2, 637-653.

Drexler M. and Ainsworth C. H. (2013) Generalized Additive Models Used to Predict

Species Abundance in the Gulf of Mexico: An Ecosystem Modeling Tool. PLoS ONE,

8, doi:10.1371/journal.pone.0064458

Fahrmeir L. and Lang L. (2001) Bayesian inference for generalized additive mixed models

based on Markov random field priors. Journal of the Royal Statistical Society. Series

C, 50, 201-220.

Friedman J. H. (1991) Multivariate adaptive regression splines. Annals of Statistics, 19,

1-67.

Gamerman D. (1997) Sampling from the posterior distribution in generalized linear

mixed models. Statistics and Computing, 7, 57-68.

Green P. J. and Silverman B. W. (1995) Nonparametric regression and generalized linear

models. Chapman and Hall.

Kaplan E. L. and Meier P. (1958) Nonparametric estimation from incomplete observa-

tions. Journal of American Statistical Association, 53, 457-481.

Lang S. and Brezger A. (2004) Bayesian P-Splines. Journal of Computational and Graph-

ical Statistics, 13, 183-212.

Liu W. and JP Morgan Chase and Vu C. and Acxiom and Cela J. (2009) Generalizations

of Generalized Additive Model (GAM): A Case of Credit Risk Modeling.

Hastie T. J. and Tibshirani R. J. (1986). Generalized Additive Models. Statistical Science,

1, 297-318.

Hastie T. J. and Tibshirani R. J. (1990). Generalized Additive Models. Chapman &

Hall/CRC.

Sapra A. K. (2013) Generalized additive models in business and economics. International

Journal of Advanced Statistics and Probability, 1, 64-81.

Stepanova M. and Thomas L. C. (2002) Survival analysis for personal loan data. The

Journal of the Operational Research Society, 50, 277-289.

24



Therneau T. and Grambsch P. (2000). Modeling Survival Data: Extending the Cox

Model. SpringerVerlag, New York.

Wood S. N. (2000) Modelling and smoothing parameter estimation with multiple

quadratic penalties. Journal of the Royal Statistical Society. Series B, 62, 413-428.

Wood S. N. (2006). Generalized Additive Models: An Introduction with R. Chapman &

Hall/CRC.

Wood S. N. (2008) Fast stable direct fitting and smoothness selection for generalized

additive models. Journal of the Royal Statistical Society. Series B, 70, 495–518.

Wood S. N. (2011) Fast stable restricted maximum likelihood and marginal likelihood es-

timation of semiparametric generalized linear models. Journal of the Royal Statistical

Society. Series B, 73, 3-36.

Wood S. N. and Goude Y. and Shaw S. (2015) Generalized additive models for large

datasets. Journal of the Royal Statistical Society. Series C, 64, 139-155.

Wood S. N. and Li Z. and Shaddick G. and Augustin N. H. (2016) Generalized additive

models for gigadata: modelling the UK black smoke network daily data. Journal of

the American Statistical Association, 64, 139-155.

Wood S. N. (2016). https://cran.r-project.org/web/packages/mgcv/mgcv.pdf. Package

mgcv.

25


