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Abstract: Drug resistance elicited by cancer cells still constitutes a huge problem that 

frequently impairs the efficacy of both conventional and novel molecular therapies. 

Chemotherapy usually acts to induce apoptosis in cancer cells; therefore, the investigation 

of apoptosis control and of the mechanisms used by cancer cells to evade apoptosis could 

be translated in an improvement of therapies. Among many tools acquired by cancer cells 

to this end, the de-regulated synthesis and metabolism of sphingolipids have been well 

documented. Sphingolipids are known to play many structural and signalling roles in cells, 

as they are involved in the control of growth, survival, adhesion, and motility. In particular, 

in order to increase survival, cancer cells: (a) counteract the accumulation of ceramide that 

is endowed with pro-apoptotic potential and is induced by many drugs; (b) increase the 

synthesis of sphingosine-1-phosphate and glucosylceramide that are pro-survivals signals; 

(c) modify the synthesis and the metabolism of complex glycosphingolipids, particularly 

increasing the levels of modified species of gangliosides such as 9-O acetylated GD3 

(αNeu5Ac(2-8)αNeu5Ac(2-3)βGal(1-4)βGlc(1-1)Cer) or N-glycolyl GM3 (αNeu5Ac 

(2-3)βGal(1-4)βGlc(1-1)Cer) and de-N-acetyl GM3 (NeuNH(2)βGal(1-4)βGlc(1-1)Cer) 

endowed with anti-apoptotic roles and of globoside Gb3 related to a higher expression of 

the multidrug resistance gene MDR1. In light of this evidence, the employment of 

chemical or genetic approaches specifically targeting sphingolipid dysregulations appears a 

promising tool for the improvement of current chemotherapy efficacy. 
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1. Introduction 

Chemotherapy is a principal approach to overcoming cancer; in particular, the employment of 

molecular targeted therapies has significantly improved the efficacy of chemotherapy in arresting 

tumour progression. Nevertheless, drug resistance remains a considerable problem because it can 

severely limit the effectiveness of chemotherapy. 

Resistance to drugs can be intrinsic or acquired. Intrinsic resistance indicates that before receiving 

chemotherapy, resistance-mediating factors exist in the majority of tumour cells, which makes the 

therapy ineffective. By contrast, acquired drug resistance develops during treatment in tumours that are 

initially sensitive, and such resistance can be caused by novel mutations as well as by various other 

adaptive responses, such as the increased expression of therapeutic targets and the activation of 

alternative, compensatory signalling pathways [1]. These drug-adaptive mechanisms can explain why 

patients with tumour relapse usually present with more resistant disease.  

A large range of molecular mechanisms are implicated in drug resistance: these include increased 

rates of drug efflux, alterations in drug metabolism, mutations of drug targets [1–4], the presence of 

cancer stem cells [5], the activation of survival signalling pathways and the inactivation of downstream 

death signalling pathways [4,6]. In particular, a key mechanism that leads to drug resistance is the 

establishment of an apoptosis resistant phenotype, because chemotherapeutic agents, despite their 

different mechanisms of action, generally flow into a common, final pathway of cell death: Primarily 

apoptosis. For these reasons, elucidating the molecular pathways that are connected to apoptosis 

resistance could lead to improved chemotherapy efficacy. 

Among the regulators of apoptosis, cellular sphingolipids appear to play a significant role and have 

attracted increasing interest in relation to cancer. Sphingolipids are membrane and intracellular lipids 

that typically play structural roles and can act as signalling molecules and/or modulators of signalling 

pathways that are strictly connected to cell survival. In this way, sphingolipids are key regulators of a 

vast number of cellular processes such as cell growth, adhesion, migration, senescence, and cell death 

in the form of apoptosis, autophagy, and necrosis [7–9]. The sphingolipid network is complex and 

constituted by various molecules that, beginning from the base molecule, ceramide (Cer), are 

elaborated by various enzymes, mainly by the addition of phosphocholine to give sphingomyelin (SM) 

or the addition of monosaccharides to give glycosphingolipids (GSLs). Sphingosine-1-phosphate (S1P) 

is closely interconnected with this system and its content is in dynamic balance with Cer levels  

(this is known as “sphingolipid rheostat”) [10]. Although S1P and ceramide mainly act as signalling 

molecules, complex glycosphingolipids are typically clustered in plasma membrane lipid rafts, where 

they interact with growth factor receptors, integrins, and key molecules such as tetraspanins and 

caveolin and, thus, participate in intracellular signalling and cell-cell and cell-matrix interactions [11]. 

Cancer cells typically show significant alterations in the profiles and content of sphingolipids and 

S1P, which are related to aberrant cell growth, survival, and adhesion [11]. This review focuses on the 

roles of sphingolipids in cancer cells and their part in apoptosis and drug resistance. 
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2. Sphingolipids: Insight into Their Structure and Metabolism 

The different sphingolipids can originate from “de novo synthesis”, the degradation of complex 

sphingolipids [12], or the recycling of long chain bases through a salvage pathway (Figure 1) [7,13].  

Figure 1. Sphingolipid synthesis and metabolism. SPT, serine-palmitoyl transferase; KSR, 

ketosphinganine reductase; CerS, ceramide synthase; DES, dihydroceramide desaturase; 

GlcCerS, glucosylceramide synthase; GlcCerDase, glucosylceramidase; CerGalT, ceramide 

galactosyl transferase; GalCerDase, galactosylceramidase; Cer1PP, ceramide-1-phosphate 

phosphatase; CerK, ceramide kinase; SMS, sphingomyelin synthase; SMase, spingomyelinase; 

SK, sphinosine kinase; SPP1, S1P phosphatase; Cer, ceramide; SM, Sphingomyelin;  

Cer1P, Ceramide-1-phosphate; GlcCer, Glucosylceramide; GalCer, Galactosylceramide; PC, 

phosphatidylcholine; DAG, diacylglycerol.; Gb3 s., Gb3 (globotriaosylceramide) synthase; 

Gb4 s., Gb4 (globotetraosylceramide) synthase; GM3 s., GM3 synthase (ST3 β-galactoside-

α-2,3-sialyltransferase-5); GD3 s., GD3 synthase (ST8 α-N-acetyl-neuraminide-α-2-8-

sialyltransferase); GT3 s., GT3 synthase (ST8 α-N-acetyl-neuraminide-α-2,8-

sialyltransferase 1); GalNAc-T, β-1,4-N-acetyl-galactosaminyltransferase-1; GalT-II, 

galactosyltransferase; UDP-gal, βGlcNAc-β-1,3-galactosyltransferase; ST-IV, ST6 (α-N-

acetyl-neuraminyl-2,3-β-galactosyl-1,3)-N-acetylgalactosaminide-α-2,6-sialyltransferase. 

 

The “de novo” biosynthesis of sphingolipids begins with the condensation of palmitoyl-CoA with 

L-serine to form 3-ketosphinganine, which is subsequently reduced to sphinganine. Then, sphinganine 

binds to a fatty acid, forming dihydroceramide in a reaction that is catalysed by (dihydro)-ceramide 

synthase (CerS). In the salvage pathway, the same enzyme catalyses the synthesis of Cer from 

sphingosine (Sph) [7]. In mammalian cells, six different isoforms of CerS have recently been 
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identified, and these are encoded by six different genes, which are members of the LASS (Longevity 

Assurance Genes) family. Each CerS synthesises a different Cer species, which differ from each other 

in fatty acid chain length and unsaturation [14,15]. In “de novo” biosynthesis, dihydroceramide is 

desaturated with the consequent formation of Cer [16]. All of the enzymes involved in the de novo 

biosynthesis of Cer are localised in the endoplasmic reticulum (ER) membrane and act on the cytosolic 

surface of this subcellular organelle. The products of the reactions that are catalysed by these enzymes 

remain anchored to the ER.  

Cer is the common precursor for the synthesis of all complex sphingolipids and can be bound to 

different functional groups, generating Cer 1-phosphate, SM, and GSLs [7]. In particular, Cer can be 

phosphorylated by Cer kinase (CK) consequently forming Cer 1-phosphate (Cer1P) [7,17]. SM 

synthesis is based on the transfer of phosphocholine from phosphatidylcholine to Cer, with the 

production of a diacylglycerol (DAG) molecule and this reaction is catalysed by SM synthase (SMS). 

Several studies suggest the existence of two enzymatic SMS isoforms: SMS1, which is localised on 

the luminal side of the cis/medial Golgi apparatus; and SMS2, which is primarily localised at the 

plasma membrane [7,18]. Experimental evidence has shown that approximately 90% of the de novo 

synthesis of SM occurs in the cis/medial Golgi, and only a small percentage occurs at the plasma 

membrane. Therefore, most SM biosynthesis requires a mechanism of Cer transport from the ER, 

where it is synthesised, to the Golgi apparatus [19]. The localisation of SMS2 at the plasma membrane 

suggests its role as a regulator of SM and Cer levels for signalling pathways and signal transduction. 

Glycosphingolipids are derived from the conjugation of a primary alcoholic residue of Cer with one 

or more saccharide units through a β-glycosidic bond. Ceramide galactosyl transferase synthesises 

galactosylceramide from Cer and UDP-galactose [12] whereas glucosylceramide is obtained from Cer 

and UDP-glucose through a reaction that is catalysed by GlcCer synthase (GCS), which is localised to 

the cytosolic leaflet of the Golgi apparatus [20]. Therefore, GlcCer biosynthesis, as well as that of SM, 

requires an efficient transport mechanism for Cer from the cytoplasmic side of the ER to the 

cytoplasmic side of the cis-Golgi [19]. Once synthesised, GlcCer can be routed directly to the plasma 

membrane (via a vesicular system), or it can be further modified by subsequent glycosylations, with 

the consequent production of more complex glycosphingolipids, such as gangliosides. This process is 

catalysed by different glycosyl-transferases that act by associating with individual GlcCer saccharide 

units, in a precise, sequential order. The enzymes involved in these reactions are located and act at the 

luminal surface of the Golgi cisternae and a protein that mediates the translocation of GlcCer from the 

cytosolic to the luminal side of the cis-Golgi so that subsequent glycosylations can take place, has been 

hypothesized [21,22]. Lactosylceramide is the basis of all complex glycosphigolpids because it is the 

acceptor for various transferases that generate the three major classes of complex glycosphingolipids: 

the lacto(neo) series (major core structure, Galβ 4GalNAcβ 3Galβ 4Glcβ Cer), the globo series (major 

core structure, Galα 4Galβ 4Glcβ Cer), and gangliosides (major core structure, Galβ 3GalNAcβ 4Galβ 

4Glcβ Cer) [23]. In particular, gangliosides are characterised by the presence of one or more sialic acid 

residues in their carbohydrate moiety and are synthesised via three major pathways named “a” (GM2, 

GM1, and GD1a), “b” (GD3, GD2, GD1b, and GT1b), and “c” (GT3, GT2, GT1c, and GQ1c), which 

have a common precursor (GM3). 

Membrane glycosphingolipids are constitutively degraded by a process involving endocytosis  

and the endo-lysosomal district. The enzymatic steps of this degradation process include 
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exoglycohydrolases that require an acidic pH, which is guaranteed within lysosomal or endosomal 

vesicles, to perform their catalytic activity. These enzymes catalyse glycosphingolipid degradation  

into monosaccharides and Cer components, and determine the sequential, hydrolytic detachment of 

monosaccharides [24]. Additionally, the catabolism of gangliosides occurs at the plasma membrane 

through the action of the membrane sialidase NEU3 [25], in intracellular organelles (such as nuclei, 

through the sialidases NEU1 and NEU3 [26], mitochondria, through the long form of the sialidase 

NEU4 (NEU4L) [27]), and in the cytosol through the sialidase NEU2 [28].  

SM degradation is catalysed by sphingomyelinase (SMase), which is an enzyme that can hydrolyse 

the SM phosphodiester bond, with the consequent formation of Cer and phosphocholine. Three major 

groups of this enzyme have been described and are distinguished according to their subcellular 

localisation and optimum pH: acidic, neutral, and alkaline SMases. The acidic SMase is mainly located 

in the lysosomal compartment. Another isoform of acidic SMase that is a splice variant of the 

encoding gene has been identified; this enzyme can be secreted or localised in the outer membrane 

leaflet [7,29,30]. The neutral SMases exist as a number of closely related isoforms that have various 

subcellular locations, including the inner leaflet of the plasma membrane, ER, Golgi, and even the 

nucleus [29,31]. The localisation of the alkaline SMase is more restricted, being mainly expressed in 

the intestinal tract and bile, where it participates in SM digestion [32].  

Cer is degraded by ceramidases (CDases), and three isoforms of CDases have been identified  

and classified based on their optimal pH: acidic, neutral, and alkaline. These CDases are located  

in the plasma membrane, lysosome, and ER/Golgi complex, respectively [33–37]. These enzymes 

hydrolytically cleave Cer into fatty acids and Sph. Notably, the origin of Sph is exclusively catabolic 

because it is only derived from sphingolipid degradation [38].  

Cer-derived Sph can be recycled or undergo phosphorylation at position C1 with the generation of 

sphingosine-1-phosphate (S1P) by sphingosine kinases. The existence of two isoenzymes, sphingosine 

kinase 1 (SK1) [39] and sphingosine kinase 2 (SK2) have been demonstrated [40,41]. S1P can be 

metabolised through irreversible cleavage to hexadecenal and phosphoethanolamine in a reaction that 

is catalysed by the S1P lyase enzyme, which is located on the cytosolic side of the ER [42]. S1P can 

also be dephosphorylated back to Sph through a reaction that is catalysed by lipid phosphatase or S1P 

specific phosphatases [43–45]. An overview of the sphingolipid biosynthetic and catabolic pathways is 

shown in Figure 1. 

3. Apoptosis Induction by Chemotherapeutic Drugs 

Two alternative pathways control apoptosis: one is mediated by death receptors that are exposed on 

the plasma membrane (the extrinsic pathway), and the other is mediated by the involvement of 

mitochondria (the intrinsic pathway) [46,47]. The final steps of both pathways involve cysteine 

aspartyl-specific proteases (caspases) and lead to apoptotic cell death (Figure 2).  

Death receptors involved in the “extrinsic pathway” are members of the tumour-necrosis factor (TNF) 

receptor superfamily, and include CD95, TNF-related apoptosis-inducing ligand-R1 (TRAIL-R1) and 

TNF-related apoptosis-inducing ligand-R2 (TRAIL-R2). These proteins are characterised by an 

intracellular domain that is referred to as the “death domain” [48,49]. Decoy receptors, by contrast, are 
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a non-signalling subset of the TNF receptor superfamily and are closely related to death receptors; 

however, they lack a functional death domain and have attenuated death receptor function [50].  

Figure 2. Apoptosis pathway. Schematic picture of extrinsic and intrinsic pathways of 

apoptosis and their main regulators. Pro-apoptotic regulators are indicated in green;  

anti-apoptotic regulators are indicated in red. 

 

Death receptors are activated by TNF superfamily members and recruit the intracellular  

FAS-associated death domain protein (FADD) through their death domains, which, in turn, attracts and 

activates caspases 8 and 10 [51,52]. In some cells, this pathway is insufficient to trigger apoptosis, and 

the involvement of mitochondria is required (intrinsic pathway). To this end, the BCL-2 family protein 

BID is cleaved by caspases 8 and 10 and moves to the mitochondria. The dissipation of the 

mitochondrial membrane potential precedes the release of cytochrome c and other apoptogenic 

molecules. In the cytosol, cytochrome c forms a complex with the apoptotic inactive initiator caspase 

activating factor-1 (APAF1), ATP, and the inactive procaspase-9. Within this complex, termed the 

“apoptosome”, caspase 9 is activated [53]. The activation of caspases proceeds along a cascade that 

ultimately leads to the activation of caspases 3, 6, and 7 by proteolysis [54]. The effector caspases 

cleave each other, which amplifies the process, nuclear laminin which is involved in chromatin 

condensation, and the inhibitor of the DNA fragmentation factor (ICAD) which leads to the release of 

endonucleases that fragment the DNA. Moreover, caspases cleave cytoskeletal proteins, including 

actin, plectin, Rho kinase 1, and gelsolin [55].  
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Cell cycle progression and cell death are intimately connected through p53. The rapid induction of 

p53 function is achieved through post-translational mechanisms, including phosphorylation and 

acetylation. p53, in turn, induces the expression of proteins involved in the mitochondrial pathway, 

such as BAX, NOXA, PUMA, and p53AIP1, and in the death receptor pathway, such as CD95, 

TRAIL-R1, and TRAIL-R2 [56–59].  

Many drugs that have been adopted for cancer therapy induce apoptosis by differentially modulating 

the above-described pathways. Traditional anti-cancer drugs are classified as DNA-damaging agents, 

anti-metabolites, mitotic inhibitors, nucleotide analogues, or topoisomerase inhibitors [60]. By contrast, 

targeted drugs act by blocking specific survival signalling pathways that are typically triggered by 

kinases or growth factor receptors [61] and induce cell death by a mechanism known as  

“oncogenic shock”, which is an imbalance in pro-survival and pro-apoptotic signals that is caused by 

the inhibition of oncogenic kinases [62].  

The survival signals that are transmitted by growth factors, cytokines, and adhesion molecules are 

mediated by the phosphatidylinositol 3-kinase (PI3K)/AKT pathway [63]. Anoikis is a particular type 

of apoptosis that is triggered by the lack of cell-matrix contacts; in fact, integrin activation usually 

leads to the activation of the PI3K/AKT cascade [64]. Therefore, targeted drugs also stimulate 

apoptosis by down-regulating PI3K/AKT (Figure 2). 

Another pathway that can be activated in response to chemotherapy is the stress-activated protein 

kinase (SAPK, also known as JUN-N-terminal kinase or JNK) pathway. SAPK can regulate the 

activity of AP-1 transcription factors, and known pro-apoptotic target genes for AP-1 are Fas and 

TNF-α [65] (Figure 2). 

Many drugs directly trigger the mitochondrial apoptotic pathway by down-regulating the expression 

of anti-apoptotic proteins belonging to the BCL-2 family of genes, mainly BCL-2, BCL-XL, and 

MCL1. BCL-2 family members are transcriptional targets of pro-survival transcription factors such as 

nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) and can, 

therefore, be activated by oncogenic mutations in kinases [61].  

4. The Role of Sphingolipids in Apoptosis and Apoptosis Resistance  

4.1. Ceramide  

Cer is known to play an important role in the regulation of cell fate by being directly involved in the 

regulation of mechanisms that control growth arrest, differentiation, and senescence [66,67]. Cer has 

emerged as a critical mediator of cell death. An increasing amount of evidence demonstrates that Cer 

also plays an important role as a tumour suppressor lipid because it is able to induce anti-proliferative 

and apoptotic responses; therefore, it acts as a major player in the mechanism of action of many 

chemotherapeutic drugs [68–71].  

The molecular pathways and regulators involved in the effects of many cancer drugs include Cer 

metabolism. Many anticancer drugs, such as daunorubicin [72], cannabinoids [73], and etoposide [74], 

and other stress-causing agonists, such as Fas ligands [75], cause an increase in endogenous Cer levels 

through de novo synthesis. Furthermore, TNF-α in breast cancer cells [76] and ethanol in hepatoma 

cells [77] increase endogenous Cer levels, which induces SM hydrolysis by SMases. Interestingly, 
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recent findings demonstrated that the catabolism of GlcCer into Cer by the nonlysosomal  

β-glucosidase GBA2 occurs at the ER and promotes apoptosis through ER stress in melanoma  

cells [78], thus involving glycolipid catabolism as a mechanism for the generation of proapoptotic 

ceramide at the ER and consequent cell death. By contrast, the overexpression of GCS, which 

catalyses the biosynthesis of GlcCer, decreases the endogenous Cer levels, resulting in the 

development of a multidrug resistance phenotype in many cancer cells [79]. Moreover, up-regulation 

of GCS, and, consequently, of GlcCer levels, has been found in different drug-resistant cancer cell 

lines and in tumor samples from patients exhibiting chemotherapy resistance, whereas GCS inhibitors 

can induce the death of multi-drug resistant (MDR) cells and augment the proapoptotic activity of 

different anticancer agents [69,71,80–82]. Furthermore the enrichment of galactosylceramide, which is 

synthesised from ceramide and UDP-galactose, favours leukaemia cell survival inhibiting drug-induced 

apoptosis [83]. Owczarek and collaborators demonstrated that high expression of ceramide galactosyl 

transferase accompanied by the accumulation of galactosylceramide in breast cancer cells increased 

tumour cell resistance to apoptosis, which suggests that the accumulation of galactosylceramide in 

tumour cells inhibits apoptosis [84]. In addition, in leukaemia cells, the activation of sphingomyelin 

synthases, which are responsible for the convertion of ceramide to sphingomyelin, is associated with 

the chemoresistant condition [85] and resistance to stress-induced apoptosis [86–88]. These data 

suggest that ceramide-based strategies promise to be effective in enhancing drug cytotoxicity and 

overcoming drug resistance [69,80–82]. On the basis of these findings, Cer metabolism has been 

identified as a feature of many drug-resistant cancers [82], and the elevation of ceramide levels through 

exogenous delivery, stimulation of de novo synthesis, or inhibition of ceramide metabolism/utilisation 

for the biosynthesis of complex sphingolipids has become an attractive chemotherapeutic strategy [89]. 

Moreover, Cer is transported from the ER to the Golgi via vesicular or monomeric transport by the 

ceramide transfer protein (CERT), and the latter specifically links Cer to the synthesis of 

sphingomyelin [90]. Two papers indicate that CERT is involved in chemoresistance and in inhibiting 

autophagic cell death and apoptosis in response to paclitaxel [91,92]. The expression of CERT, whose 

down-regulation sensitises cancer cells to multiple cytotoxic agents, is increased in drug-resistant cell 

lines and in residual tumour following paclitaxel treatment of ovarian cancer, suggesting that CERT 

could be a target for chemotherapy-resistant cancers [91]. Furthermore, Swanton and collaborators found 

that in HER2+ breast cancer, CERT protein expression acts as an independent prognostic variable and 

predictor of outcome in adjuvant chemotherapy-treated patients [92]. By contrast another paper 

implicated the loss of CERT in the progression of triple-negative breast cancer cells, which express 

cytokeratins 5/6, 14, and 17, lack ER/PR expression and ErbB2/HER2 amplification/overexpression 

and are especially refractory to treatment [93], thus suggesting that the role of CERT in 

chemoresistance and cancer progression is still controversial and could strongly depend on the global 

cancer gene expression profile. 

As in other tumour cells, an increase in Cer is important for the activity of many cytotoxic 

treatments in glioma cells [94–96]. In particular, the accumulation of de novo synthesised Cer is 

crucial for cannabinoid-triggered ER stress and apoptosis in these cells [73,97], and the accumulation 

of Cer in the ER owing to impaired Cer traffic is associated with the antiproliferative effect of nitric 

oxide [98], which suggests that Cer levels in the ER can be crucial for glioma cell fate. The control of 

Cer levels in the ER can involve specific enzymes that utilise Cer, such as SMS and GCS [99,100],  
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as well as the vesicular- and protein-mediated transport of Cer, from the ER to the Golgi apparatus  

in the sphingolipid biosynthetic pathway [19,98,101–103]. It should be hypothesised that the 

dysregulation of one or more of these metabolic events could be involved in the intrinsic or acquired 

drug resistance of glioma cells.  

In support of this hypothesis, PI3K/AKT signalling, whose aberrant activation has been identified 

as crucial to the malignant features of glioblastomas, such as rapid tumour growth, invasiveness, and 

resistance to cytotoxic treatments [104], regulates sphingolipid metabolism, which promotes Cer 

vesicular transport and results in a reduction in ER Cer levels and increased synthesis of complex 

sphingolipids in glioma cells [105]. In this context, it is interesting to note that apoptotic and  

non-apoptotic Cer-induced cell death can be inhibited by activation of the AKT pathway. In addition, 

up regulation of GCS protects glioblastoma cells against autophagic and apoptotic death and 

contributes to cell survival under chemotherapy [81].  

The diversity of Cer species that exist within the cell could explain the variety in Cer signalling. Cer 

is a substrate or product of more than 28 distinct enzymes and consists of more than 200 individual 

species with varying acyl chain lengths [106]. Hannun and Obeid hypothesised that individual Cer 

molecules are generated within distinct biochemical pathways and subcellular compartments to exert 

unique functions [106]. Further investigation and MS/MS lipidomics will contribute to identifying 

individual Cer species and their respective biological effects. Cer is an intracellular messenger that is 

able to regulate many intracellular effectors that mediate activation of the apoptotic process. In 

particular, Cer can activate serine/threonine protein phosphatases (PP1 and PP2A). These phosphatases 

act on several substrates that are all implicated in cell pathways that regulate proliferation and 

apoptosis. Among the substrates for PP1 and PP2A are retinoblastoma protein (pRB), BCL-2, c-JUN, 

SR proteins, and AKT (Figure 3A). Cer-mediated activation of PP1 seems to be involved in the cell 

cycle arrest in the G1 phase that is due to dephosphorylation of pRB [68,107]. Furthermore, PP1 

induces the dephosphorylation of SR proteins, a family of serine/arginine-domain proteins that are 

known modulators of mRNA splicing, thus inducing the alternative splicing of genes encoding BCL-X 

and caspase-9 to generate pro-apoptotic splice variants [75,108]. The mitochondrial membrane 

potential can also be altered by Cer, most likely through PP2A-mediated dephosphorylation of BCL-2, 

which cause its inactivation and favours the apoptotic process [109]. Cer also activates Cathepsin D 

protease, which, in turn, recruits and activates the pro-apoptotic protein BID to induce apoptosis 

(Figure 3A) [68]. PKC-ζ is another important target that is phosphorylated and, thus, activated by Cer. 

Activated PKC-ζ, in turn, mediates the activation of JNK and inhibition of AKT to promote apoptosis 

(Figure 3A) [110].  

Cer can also exert an antiproliferative role through inhibition of the mitogen activated protein 

kinase (MAPK) pathway, which promotes the dephosphorylation of the serine/threonine kinases 

extracellular signal regulated protein kinase 1 and 2 (ERK 1/2) (Figure 3A) [111]. These proteins, 

when dephosphorylated, are inactive and not able to migrate into the nucleus to promote the expression 

of genes involved in cell proliferation [112–116].  

Cer can self-associate within the plane of the membrane bilayer and then fuse with GSL- and 

cholesterol-containing rafts, resulting in the formation of signalling platforms [117]. Some stimuli  

that activate acid SMase at the plasma membrane induce the formation of ceramide-enriched domains 

that trap and cluster signalling proteins [117], and some proteins associated with the apoptotic  
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signalling Fas receptor FADD and caspase 8 have been shown to cluster within ceramide-enriched 

domains [118,119].  

Figure 3. Regulation of apoptosis by sphingolipids. (A) Cer directly binds and activates 

the lysosomal protease cathepsin D to enhance BID cleavage and induction of the 

mitochondrial pathway of apoptosis. Cer activates PP1 and PP2A to regulate the alternative 

splicing of apoptosis-promoting variants BCL-xS and Caspase-9 and inhibit the 

antiapoptotic effects of BCL-2, respectively. Kinase signaling. Cer directly activates  

PKC-ζ, which mediates the activation of JNK and inhibition of AKT to promote apoptosis. 

S1P suppresses Cer-mediated activation of JNK and activates pro-survival Akt/mTORC1, 

MAPK/ERK, and NF-κB signalling pathways through cell surface receptors; (B) Cer 

assembles channels in the outer membrane of mitochondria to promote the release of 

cytochrome c (cyt c) for caspase-9 activation. Cer promotes BAX activation and 

recruitment to the mitochondria through the PP2A-dependent dephosphorylation of BAX. 

Furthermore, mitochondrial Cer is metabolized to S1P which directly activates BAX.  

 

Studies over the past two decades have implicated the mitochondria as a key site of  

ceramide-mediated apoptosis [110]. Early investigations have demonstrated direct effects of Cer on 

mitochondrial function.  

Mitochondrial Cer levels are increased during apoptosis in response to diverse stimuli, including 

CD95/Fas and radiation [120]. Furthermore, selective targeting of bacterial SMase to various 

organelles has revealed that a mitochondrial pool of Cer is sufficient to induce apoptosis in MCF7 

breast adenocarcinoma cells [121]. Furthermore, Cer can induce apoptosis by forming membrane 
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channels in mitochondria that are large enough to release cytochrome c [122]. In addition, Cer has 

been reported to induce BAX dependent apoptosis in several cancers (Figure 3B) [110], including 

glioblastoma [123], breast cancer [124], prostate cancer [125], colon cancer [125], and acute myeloid 

leukaemia [126].  

Chipuk and coworkers demonstrated that Cer transfer to the mitochondria is functional to form S1P 

and/or hexadecenal, which directly promote BAX and BAK activation, respectively [127]. Therefore, 

local regulation of sphingolipid metabolism within mitochondria appears to play a critical role in 

apoptosis (Figure 3B) [128]. In addition to the potential direct lipid effects, C2-ceramide enhances the 

activation and translocation of BAX through the dephosphorylation of Ser184, which occurs through 

PP2A [129]. In particular, PP2A dephosphorylates BAX at Ser184 in vitro and interacts with BAX 

upon Cer treatment in intact cells [129].  

4.2. Sphingosine-1-Phosphate 

S1P is a bioactive molecule that has antiapoptotic properties through antagonising ceramide  

(Cer)-mediated apoptosis by activating ERK and suppression of ceramide-induced JNK activation [10]. 

In particular, growth factors such as PDGF, EGF, VEGF, bFGF, IGF-1, nerve growth factor (NGF), 

and TGF-β), cytokines (such as TNF-α, interleukins), and hormones stimulate SK1 activation [130] by 

inducing its phosphorylation on Ser225 in a PKC- and ERK-dependent manner (Figure 4). This 

modification leads to SK1 translocation from the cytosolic compartment to the plasma membrane. 

Because sphingosine is mainly in the inner layer of the plasma membrane, SK1 translocation to the 

plasma membrane is essential for sphingosine phosphorylation and the consequent generation of S1P 

(Figure 4) [131].  

Figure 4. SK1 activation by various agonists (PDGF, EGF, VEGF, bFGF, IGF, NGF, 

TGF-β, TNF-α, interleukins and hormones) via their receptor is followed by SK1 

translocation to the plasma membrane to generate S1P from sphingosine.  
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Further characterisation of S1P-mediated cellular effects has revealed that the SK1 and SK2 

isoforms differentially regulate cell fate [110], and fundamental roles of S1P and SK1 in favouring cell 

survival, migration, angiogenesis, and drug resistance have been identified [68,132]. A significant 

body of literature implicates SK1/S1P signalling in the process of drug resistance because this 

signalling protects cancer cells from chemotherapy-induced apoptosis. For example, in prostate 

adenocarcinoma SK1 regulates drug-induced apoptosis and serves as a chemotherapy sensor in culture 

and animal models. In particular, SK1 overexpression has been show to impair the efficacy of 

chemotherapy (docetaxel and camptothecin), and the silencing of SK1 by siRNA or its pharmacologic 

inhibition has been show to induce apoptosis in vitro and in vivo [133]. Moreover, Bektas and 

coworkers demonstrated that over-expression of SK1 reduced the sensitivity of melanoma cells to  

Fas- and Cer-mediated apoptosis, and that this effect could be reversed by inhibiting SK1  

expression [134]. Furthermore, it has been shown that SK1 over-expression increases the proliferation 

and resistance to tamoxifen of breast cancer cells, whereas knock down of SK1 restores tamoxifen 

responsiveness [135]. Interestingly, during the onset of TNF-induced apoptosis, cathepsin B is 

responsible for the proteolysis of SK1, which involves the “lysosomal pathway” of apoptosis in its 

down-regulation [136]. Despite advances in the knowledge of SK2, much is still unknown about this 

kinase. While SK1 activity is associated with mitogenic and anti-apoptotic effects, over-expression of 

SK2 has been shown to promote cell death [110,137–139]. SK2 localises primarily in the nucleus and 

its over-expression suppresses growth and enhances apoptosis, preceded by cytochrome c release and 

activation of caspase-3 [139]. Moreover, SK2 contains a BH3 domain that sequesters BCL-XL and 

abrogates its anti-apoptotic function indicating that SK2 can be pro-apoptotic [138]. It has been  

shown that SK1 is an oncogene that is up-regulated in many cancers and associated with drug  

resistance [140], whereas the expression of SK2 sensitises cells to chemotherapeutic agents [141].  

It has been demonstrated that glioblastoma cell lines and tissue specimens show high SK1  

expression [142,143], which correlates with worse prognosis and poor patient survival [140], and that 

silencing or pharmacological inhibition of SK1 and SK2 (i) decreases the proliferation rate of 

glioblastoma cells, which prevents their entry into the cell cycle [140,142]; and (ii) restores the 

sensitivity of glioma stem cells to temozolomide [144]. SK2, has been demonstrated to play a role in a 

sphingosine salvage pathway of mammalian cells that acts in concert with S1P phosphatase (SPP1) to 

convert S1P back to sphingosine, which, in turn, is converted to Cer for Cer production, while 

cytosolic SK1 generates S1P, which may decrease the generation of Cer [44,145]. Taken together, this 

evidence demonstrates a relationship between the changes in S1P metabolism and the development of 

drug resistance in human cancer cells. 

S1P can exert its bioactive effects intracellularly [132] by acting as a second messenger, and in the 

extracellular milieu, where it mainly acts as a ligand for the specific cell surface G-protein coupled 

receptors [110,146–148] S1P1–S1P5, which are coupled to various signaling pathways [110], such as 

Akt/mTOR [149], NF-κB [150], and MAPK [151] (Figure 3A).  

For example, S1P which acts intracellularly, activates calcium channels in a pertussis toxin- independent 

manner to mobilize calcium stores [152]. Recently Spiegel and collaborators demonstrated that  

SK2-mediated generation of nuclear S1P inhibits the activity of histone deacetylase 1 and 2 (HDAC1 

and HDAC2) to regulate gene expression [153], identified S1P as the first nuclear lipid to be 

associated with the epigenetic regulation of gene expression, and exposed nuclear sphingolipid 



Int. J. Mol. Sci. 2014, 15 4368 

 

metabolism as an intriguing area of study for the regulation of autophagy and apoptosis. Furthermore 

as previously noted, the generation of mitochondrial S1P directly activates BAK to promote the release 

of cytochrome c, therefore, further stressing the importance of subcellular sphingolipid pools in 

regulating cell fate [127]. 

The use of different inhibitors of SKs highlights the key anti-apoptotic role of SKs and has proven 

useful in enhancing the cytotoxic effects of different chemotherapeutics. Screening a large library of  

non-lipid, synthetic inhibitors of SK1, French et al. [154] found that each inhibitor induced apoptosis 

concomitant with the tumour cell cytotoxicity of various cancer cell lines, including multidrug-resistant 

lines. The non-specific inhibitor of SKs dimethylsphingosine (DMS) has been shown to inhibit 

leukaemia, colon, epidermoid, and lung tumour cell growth and to reduce metastasis in vivo [155,156], 

as well as increase the sensitivity of human leukaemia cells to apoptosis in response to radiation,  

TNF-α and Fas ligands [157]. A DMS-mediated decrease in cell viability and invasion and increase in 

apoptosis may be triggered by the activation of p38 and the SAPK/JNK signaling pathways [158]. 

Safingol, a competitive SK1 inhibitor, has been found to induce apoptosis and increase the  

growth-inhibitory actions of doxorubicin, even in multidrug-resistant cancer cells and is under 

evaluation for the treatment of various human cancers in combination with other chemotherapeutic 

agents, such as cisplatin [159]. 

However, because SK1 and SK2 could perform different functions in cancer progression and drug 

resistance, it is very important to have specific inhibitors for these isoforms. SK1-I (BML-258),  

which is a specific SK1 inhibitor, prevents tumour growth and vascularisation, induces apoptosis in 

glioblastoma xenografts, and enhances survival in orthotopic glioblastoma [160]. A SK2-selective 

inhibitor (ABC294640) inhibits tumour growth and induces apoptosis and autophagic cell death in 

kidney tumour xenografts [161]. In addition to its immunosuppressive function, the S1PR antagonist 

FTY720 induces growth arrest and apoptosis in leukaemia, bladder, prostate, breast cancer, and glioma 

cells [162–165]. FTY720 also promotes apoptosis in drug resistant multiple myeloma cells, by 

inducing mitochondrial membrane potential changes, Bax cleavage, and caspase activation [166]. 

Furthermore, FTY720 is able to prevent tumour growth and metastasis in mouse breast cancer cells,  

in vitro and in vivo [167].  

Lépine and her collaborators demonstrated that doxorubicin treatment dramatically reduces the 

autophagic activity of SPP1-depleted cells and sensitises the cells to apoptosis, which surprisingly, 

occurred in an autophagy-dependent manner [168]. The authors concluded that doxorubicin enhances 

de novo Cer synthesis to suppress Akt and stimulate the calpain-mediated cleavage of Atg5, thus 

effectively switching protective autophagy in SPP1-depleted cells to apoptosis [168]. Moreover, 

different sphingosine kinase inhibitors stimulate autophagy [161,169]; SKI-I has been demonstrated to 

stimulate the autophagy-dependent activation of caspase-8 and initiation of the caspase cascade [169]. 

In contrast, DMS, SKI-2, and ABC294640 induced the autophagic cell death that was associated with 

a decrease in AKT activity and upregulation of Beclin 1, similar to the mechanisms described for  

Cer [161,170]. The mechanisms underlying the anti-apoptotic effect of S1P appear to be primarily the 

prevention of cytochrome c release from mitochondria and inhibition of changes in the mitochondrial 

membrane potential [157]. However, further studies are required to characterize the effects of SK1 and 

SK2 in the regulation of cell survival or cell death. 
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5. The Role of Complex Glycosphingolipids in Apoptosis and Apoptosis Resistance 

5.1. Gangliosides 

A great number of studies have demonstrated that cancer cells endowed with apoptosis resistance 

also display a modified ganglioside pattern. In ovarian carcinoma cells, fenretinide and paclitaxel 

resistance have been correlated with alterations in the cell ganglioside composition [171,172]. The 

connections between these modifications and the mechanisms leading to drug resistance have only 

been clarified in part, and it is possible that multiplex mechanisms connect ganglioside alterations to 

drug resistance. In some drug-resistant cancer cells, an increase in ganglioside synthesis appeared to be 

a tool for escaping the accumulation of Cer [171,173], which, as previously described, is a key mediator of 

apoptosis induced by many anti-tumour drugs. In fact, in this way, Cer is converted into GlcCer and 

complex glycosphingolipids, including gangliosides, which are not endowed with the same pro-apoptotic 

capability. In other reports, it has been shown that gangliosides are directly connected to the expression and 

activation of P glycoprotein (P-gp) and the multidrug resistance-associated protein (MRP1) [174,175]. In 

many cases, cellular ganglioside profiles are connected with cell differentiation [176–178]; therefore, 

ganglioside modifications that are able to induce a more differentiated phenotype are also frequently 

associated with a decrease in apoptosis resistance [179]. Along these lines, an increase in GM3 was 

demonstrated to promote the differentiation of human colonic carcinoma cells [180] and the chronic 

myeloid leukaemic cells, K562 [181]. In both of these cases, this event also induced increased 

apoptosis sensitivity. Gangliosides are also implicated in the regulation of the epithelial mesenchymal 

transition (EMT) [182], which is the conversion from a less mobile epithelial phenotype to a 

mesenchymal phenotype with higher mobility and resistance to apoptosis, particularly anoikosis [183]. 

The altered ganglioside pattern could also reflect the composition of membrane lipid rafts and, 

therefore, the activation of receptors and signalling molecules that are clustered in these regions of the 

plasma membrane and are involved in the control of apoptosis.  

Some recent papers demonstrated that the treatment of cancer cells with the TNFα-related apoptosis 

inducing ligand (TRAIL) induces the redistribution of TRAIL death receptor 1 (DR4) and TRAIL 

death receptor 2 (DR5) into lipid rafts and, thus, triggers apoptosis through the activation of caspases 8 

and 10 [184–186]. Moreover, the recruitment or constitutive localisation of DR4 and/or DR5 into lipid 

rafts accounts for the sensitivity of non-small cell lung carcinoma cells to TRAIL [187] and, for 

ursodeoxycholic acid and fludarabine-induced apoptosis in gastric cancer [186] and Burkitt lymphoma 

B cells [188]. The cell ganglioside composition reportedly affects the localisation of DR4 and DR5 

into lipid rafts in B lymphoblastoid human cells [189]; therefore, it could be hypothesised that 

modifications concerning ganglioside metabolism could induce the exclusion of DR4 and DR5 from 

lipid rafts and, thus, cause the highly variable response of cancer cells to apoptosis during TRAIL 

treatments. Ganglioside alterations achieved by cancer cells could also modulate the dynamics of the 

plasma membrane in modifying the internalisation and recycling of key signalling molecules and 

receptors that are involved in the regulation of apoptosis. In renal carcinoma cells, the enrichment of 

ganglio-series gangliosides, in particular GD1a (αNeu5Ac(2-3)βGal(1-3)βGalNAc(1-4)αNeuu5Ac 

(2-3)βGal(1-4)βGlc(1-1)Cer), to the detriment of globo-series gangliosides, changes the functionality 

of plasma membrane caveolae and increases the endocytosis and lysosomal degradation of β1 integrin 
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and epidermal growth factor receptor (EGFR) [190]. This event radically changes intracellular 

signalling, down-regulates FAK and PI3/AKT pathways, and promotes a shift from autophagy to 

apoptosis, which increases the occurrence of cell death after etoposide treatment [190].  

Although it may be suspected that, in many cases, the overall cell ganglioside profile and the relative 

proportions of gangliosides are important in defining drug-resistant behaviour, the direct involvement in 

apoptosis control and drug resistance has been better characterised for some gangliosides than  

for others.  

GD3 is a minor ganglioside in most normal tissues except placenta and thymus [191]. Nevertheless, 

GD3 is highly synthesised during development and in a variety of diseases, including many tumours, 

particularly, of neuroectodermal origin such as melanoma, medulloblastoma, and neuroblastoma [192] 

and many others such as meningioma, glioma, sarcoma, leukaemia, colorectal and pancreatic 

carcinoma [193,194]. In addition to its involvement in cell growth and differentiation, GD3 plays a 

well-recognised role in apoptosis. In human tumour lymphoid and myeloid cell lines, GD3 rapidly 

accumulates upon Fas triggering or Cer exposure and directly induces apoptosis (Figure 5). Preventing 

endogenous GD3 accumulation, by suppressing GD3 synthase expression with specific antisense 

oligodeoxynucleotides, can substantially block Fas- and ceramide-induced apoptosis [195]. GD3 is 

synthetised by a sialyltransferase (ST8 α-N-acetyl-neuraminide-α-2-8-sialyltransferase), which is 

referred to as GD3 synthase and is localised in the early Golgi. During apoptosis, GD3 relocates to the 

mitochondria, where it elicits a burst of ROS production from complex III of the mitochondrial 

electron transport chain. In this way, GD3 contributes to the opening of the mitochondrial permeability 

transition pore complex (PTPC) and induces the dissipation of the inner mitochondrial trans-membrane 

potential (DWM) [196]. These events are then associated with mitochondrial swelling, outer 

membrane disruption, and the release of cytochrome c, which, in turn, activates caspase-9 and, 

subsequently, the entire apoptotic cascade (Figure 5). PTPC opening is also controlled by BCL-2 [197] 

and the over-expression of BCL-2 prevents apoptosis induced by exogenous GD3 or endogenous GD3 

synthesised by GD3 synthase (Figure 5) [198]. GD3 accumulation and translocation to the mitochondria 

requires Cer produced by acidic SMase during Fas [199] or TNFα-induced apoptosis [200]. GD3  

could also play a pro-apoptotic role by preventing the nuclear translocation of NF-κB and  

NF-kB-dependent gene expression. In this way, GD3 sensitises cells to apoptotic stimuli [200]. These 

effects appear to be specific to GD3 and possibly due to the chemical features of its two sialic acid 

residues, because other gangliosides, such as GM3 and GD1a, are not able to dissipate the DWM [195]. 

Interestingly, chemotherapy and radiotherapy were demonstrated to induce the increase of GD3 in 

cancer cells. Fenretinide induces the activation of acidic SMase and GD3 synthase, leading to the 

apoptosis of neuroblastoma cells [201] and daunorubicin treatment triggers the accumulation of GD3 

in human leukaemic cells [83].  

Despite the numerous studies that have shown the pro-apoptotic role of GD3, the reality is that, in 

many cancer cells, GD3 accumulation is not lethal. In addition to its pro-apoptotic role, GD3 has been 

shown to promote tumorigenesis by enhancing migration, adhesion, proliferation, metastasis, and 

angiogenesis [202–205]. Therefore, many cancer cells find a way to accumulate GD3 and benefit from 

it by simultaneously defending themselves from GD3-mediated mitochondrial damage. The main 

tactic that cancer cells use to suppress the pro-apoptotic drive of GD3 is to modify the GD3 structure 

through the addition of O-acetyl esters to the hydroxyl group at the C9 position of sialic acid.  
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9-O-acetylation abrogates the pro-apoptotic activity of GD3 and has been recorded in many cancers 

including melanoma, leukaemia, and glioma [206–210]. Another strategy for suppressing the  

pro-apoptotic action of GD3 is to prevent its translocation to the mitochondria. When GD3 synthase 

binds to the molecular chaperone calnexin, this enzyme is retained within the ER and does not move to 

the Golgi (Figure 5). This event does not compromise the enzymatic activity of GD3 synthase, but  

de novo synthesised GD3 fails to reach the mitochondria [211]. Calnexin expression can be induced by 

growth factors and is up-regulated in breast cancer and myeloma [212]. BCL-2 over-expression is also 

useful for avoiding apoptosis in the presence of GD3 [212].  

Figure 5. Ganglioside GD3 role in apoptosis. Involvement of ganglioside GD3 in the 

apoptotic cascade.  

 

Another ganglioside that has mainly been studied in the context of apoptosis and drug resistance is 

GM3; however, the obtained results are controversial. In fact, an increase in GM3 in murine bladder 

cancer cells stimulates apoptosis [213], and in K562 human myeloid leukemic cells, it restores the 

sensitivity to etoposide and staurosporine treatments, which promote increased expression of the  

pro-apoptotic proteins BAX and BAD and decreased expression of BCL-2 [181] (Figure 6A,B). In 

non-small cell lung adenocarcinoma cells, the IC50 values for the EGFR receptor tyrosine kinase 

(EGFR-TK) inhibitors, gefitinib and AG1478, are inversely correlated with increased GM3 synthase 

levels [214]. Moreover, in human leukaemic B-cells a molecular interaction between GM3 and the 

TRAIL death receptor DR4 within membrane lipid rafts has been detected and this has been strictly 

related to TRAIL susceptibility of cancer cells (Figure 6A,B) [189]. 
   



Int. J. Mol. Sci. 2014, 15 4372 

 

Figure 6. Ganglioside GM3 role in apoptosis. (A) Activation of pro-survival intracellular 

signaling pathways in cells showing a low content of GM3 in the plasma membrane;  

(B) Inhibition of pro-survival intracellular signaling pathways and activation of  

pro-apoptotic pathways and regulators in cells showing a high content of GM3 in the 

plasma membrane. 

 

By contrast, it has also been reported that the doxorubicin-resistant small-cell lung cancer cell line 

SBC-3/ADM100 and the cisplatin-resistant small-cell lung cancer cell line SBC-3/CDDP exhibit 

higher levels of GM3 than the parent cell line [215]. Similarly, transfection of the GM3 synthase 

(SAT-I) cDNA into J5 cells, which are GM3-deficient clones of the murine 3LL Lewis lung carcinoma 

cell line [216], gives rise to enhanced resistance to etoposide and doxorubicin-induced apoptosis 

mainly owing to the over-expression of BCL-2 [217]. To evaluate GM3 in apoptosis resistance, the 

chemical structure of this ganglioside needs to be more accurately determined. In fact, there is 

emerging evidence that cancer cells could also display variants of the common N-acetyl GM3, such as 

de-N-acetyl GM3, which has a free amino group at the 5 position of sialic acid instead of the acetyl 

group [218] or N-glycolyl GM3, which is a variant of GM3 that contains N-glycolylneuraminic acid 

instead of N-acetylneuraminic acid (Figure 6) [219–221].  

These chemical modifications strongly alter the capability of GM3 to modulate the  

activity of EGFR: thus, N-acetyl GM3 inhibits EGFR autophosphorylation/activation [222], whereas 

N-glycolyl GM3 is not able to act in this manner [223], and de-N-acetyl GM3 even stimulates EGFR  

activation [224]. Because EGFR activation mediates resistance to chemotherapy and apoptosis by 

activating the mitogen activated protein kinases (MAPK) and phosphoinositide 3-kinase  

(PI3-K)/AKT-dependent survival pathways [225], the presence of different species of GM3 in tumours 

could explain the controversial role of this ganglioside in apoptosis, as the experimental data  

have shown. 

5.2. Globosides 

In addition to gangliosides, it has been demonstrated that also some globo-series glycosphingolipids 

are important in apoptosis and drug resistance in cancer. The globoside Gb3 (Galα 4Galβ 4Glcβ Cer), 
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also known as CD77, was identified as a Pk antigen of the P blood group system and acts as a natural 

receptor for bacterial toxins of the Shiga family (Stx) [226]. Gb3 is highly expressed by immature  

B-cells and various types of cancer, including Burkitt’s lymphoma [227,228] and breast cancer [229]. 

Gb3 has been shown to increase the expression of the human multidrug resistance gene (MDR1) 

through the recruitment of c-Src kinases [230]; therefore Gb3 could enhance apoptosis resistance 

simply by promoting the extrusion of drugs from cancer cells (Figure 7).  

Figure 7. Involvement of gangliosides, globosides, and enzymes involved in their 

metabolism in resistance to apoptosis. Schematic picture of how particular cell 

glycosphingolipid profiles could lead to apoptosis resistance in cancer cells. 

 

The globoside Gb4 (GalNAcβ 3Galα 4Galβ 4Glcβ Cer) is synthetised at high levels by  

erythrocytes and during embryogenesis [231]. It has been demonstrated that Gb4 is able to interact 

with EGFR in colon carcinoma cell lines and to transduce survival signals mediated by the activation 

of MAPK [232].  

6. Pivotal Enzymes Involved in Glycosphingolipid Metabolism and in Apoptosis Resistance 

The involvement of some glycosphingolipids in apoptosis resistance entails the association of 

enzymes that regulate their metabolism in cancer pathogenesis. Thus, high expression of GD3 synthase 

(ST8 α-N-acetyl-neuraminide-α-2-8-sialyltransferase) is associated with poor prognosis in breast 

cancer [233], whereas small interfering RNAs directed towards the GD3 synthase gene induce 

apoptosis in lung cancer cells [234]. Along these lines, the expression of GM3 synthase (ST3  

β-galactoside-α-2,3-sialyltransferase-5) mRNA has been suggested to be a novel, useful marker with 

which to predict the sensitivity of non-small-cell lung cancer to EGFR-TK inhibitors [214].  

The plasma membrane sialidase NEU3, which is deeply involved in ganglioside catabolism [25], 

has been demonstrated to play a key role in determining the survival of cancer cells [235]. NEU3 is 

often markedly up-regulated in human cancers and leads to apoptosis resistance, deregulation of the 

activation of EGFR, AKT, and Ras, and the expression of BCL-XL and BCL-2 [235]. In renal carcinoma 

cells, NEU3 silencing promotes a shift from autophagy, which seems to be the characteristic response to 
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etoposide treatment, to apoptosis, thus significantly increasing cell death [190]. In fact, the progression 

of renal carcinoma is usually related to the de-repression of LC3B, which stimulates autophagy and 

plays a key role in sustaining cell viability during nutrient starvation, metabolic stress, and 

radio/chemotherapeutical treatments [236]. NEU3 has been demonstrated to further sustain this 

process by increasing BCL-2 expression and decreasing BAX expression [190]. Additionally, in 

chronic myeloid leukaemic K562 cells, NEU3 silencing leads to increases in pro-apoptotic molecules 

such as BAX and BAD and decreases in BCL-2, and thus reduces the resistance to the death signals 

that are conveyed by etoposide and staurosporine [181]. The sialidase NEU3 has been further 

implicated in the mechanisms leading to apoptosis resistance in colon cancer [237], melanoma [238], 

and prostate cancer [239]. Moreover, it has been shown that NEU3 stimulates the EGFR signalling 

pathway and, in turn, the pro-survival molecules AKT and p70S6K, which ultimately stimulate the 

hypoxia-inducible factor (HIF-1α) and increase cell survival under hypoxic conditions [240]. 

Otherwise, in acute lymphoblastic leukaemia lymphoblasts, NEU3 is down-regulated, and  

over-expression of the enzyme leads to apoptosis triggered by the increase in ceramide [209]. Because 

these data show a significant connection between NEU3 and apoptosis resistance in cancer, the 

sialidase NEU3 has been defined as a novel oncogene [241].  

Sialidase NEU4L, which is localised in the external mitochondrial membrane [242], has been 

demonstrated to recognise GD3 as a substrate and be involved in apoptosis regulation [27]. In 

particular, the expression of NEU4L dramatically decreases prior to apoptosis stimulated by catechol 

metabolites in neuroblastoma cells; and, in parallel, the ganglioside GD3 shifts to the mitochondria, 

and cytochrome c is released into the cytosol [27]. The anti-apoptotic roles of gangliosides, globosides, 

and the enzymes involved in their metabolism are illustrated in Figure 7. 

7. Conclusions 

Chemotherapy has rapidly evolved in recent last years; nevertheless, the onset of resistance 

mechanisms often impairs its long-term efficacy. Thus, strategies to circumvent therapeutic resistance 

by restoring apoptotic pathways could hold promise for better clinical management of patients with 

cancer. It is becoming increasingly evident that sphingolipids are deeply involved in the regulation of 

apoptosis and the apoptosis resistance that is displayed by cancer cells. Therefore, it is important to be 

able to regulate sphingolipid metabolism in order to develop novel anti-cancer therapeutics or to 

improve the effectiveness of current treatment strategies. From this perspective, the elevation of Cer 

levels, which has been demonstrated to have strong pro-apoptotic effects, through exogenous delivery 

or stimulation of de novo synthesis has become an attractive chemotherapeutic strategy [89].  

Cancer cells usually convert Cer into GlcCer and gangliosides to evade the pro-apoptotic  

function of Cer. It should be noted that cancer cells often show a ganglioside-enriched profile  

that has been demonstrated to be associated with an apoptosis-resistant behaviour. To this end, 

approaches that reduce GlcCer and ganglioside synthesis could improve the efficacy of chemotherapy. 

For example, PDMP (1-phenyl-2-decanoylamino-3-morpholino-1-propanol) and PPMP (1-phenyl-2-

palmitoylamino-3-morpholino-1-propanol) are structural analogues of ceramide that inhibit GlcCer 

synthase and have been demonstrated to trigger apoptosis in several cancer cell types [243,244]. 
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Additionally, strategies that silence the expression of GlcCer synthase reverse multidrug resistance in 

cancer cells [80,245].  

Furthermore, cancer cells qualitatively alter the chemical structure of ganglioside-originated 

species, such as 9-O-acetylated GD3, N-glycolyl GM3, and de-N-acetyl GM3, which are usually not 

present in healthy tissues and are involved in apoptosis resistance, as previously discussed. To this 

end, approaches that target GD3 acetylation have been revealed to induce apoptosis in glioblastoma 

cells [208]. The control of the complex glycosphingolipid profiles of cancer cells could also be 

restored by genetically manipulating the enzymes involved in their metabolism, such as sialidases or 

synthases [241].  

Another way in which cancer cells escape Cer accumulation is converting Cer into S1P, which, 

unlike Cer, acts as a pro-survival signal. Thus, the development of compounds that are able to 

modulate S1P metabolism to strongly sensitise cells to chemotherapeutic treatments for triggering 

tumour cell death is becoming an important approach for improving the survival rates of patients with 

cancer [154–156,246]. Moreover, FTY720, which is phosphorylated to form FTY720-phosphate and, 

in turn, is an agonist of four sphingosine-1-phosphate receptors, induces growth arrest and apoptosis  

in leukaemia, bladder, prostate, breast cancer, and glioma cells and prevents tumour growth and 

metastasis in mouse breast cancer cells in vitro and in vivo [162–165,167].  

Therefore, a combined therapy employing conventional or novel targeted drugs and strategies based 

on chemical compounds or genetical approaches to modulate Cer, S1P, and glycosphingolipid 

metabolism can potentially be more beneficial than monotherapy. However, some important caveats 

should be underlined. In particular, one problem that needs to be overcome is the multiplicity of 

biological events that involved sphingolipids and the redundancy of the functions of the different 

sphingolipid-metabolising enzymes. For these reasons, many of the compounds that are used to 

modulate sphingolipid metabolism exhibit non-specific effects or are not effective at tolerable  

doses [154]. Thus, accumulating evidence suggests that targeting sphingolipid metabolism may be 

helpful in overcoming drug resistance and improving cancer therapy. However, a better understanding 

of the role of sphingolipids in cancer in order to allow the development of more specific drug targets 

and inhibitors will be required before these compounds can be reliably employed in clinical trials. 
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