75 research outputs found

    A Study of Deep Learning Robustness Against Computation Failures

    Full text link
    For many types of integrated circuits, accepting larger failure rates in computations can be used to improve energy efficiency. We study the performance of faulty implementations of certain deep neural networks based on pessimistic and optimistic models of the effect of hardware faults. After identifying the impact of hyperparameters such as the number of layers on robustness, we study the ability of the network to compensate for computational failures through an increase of the network size. We show that some networks can achieve equivalent performance under faulty implementations, and quantify the required increase in computational complexity

    Alternative Techniques of Neural Signal Processing in Neuroengineering

    Get PDF
    Neural signal processing is a discipline within neuroengineering. This interdisciplinary approach combines principles from machine learning, signal processing theory, and computational neuroscience applied to problems in basic and clinical neuroscience. The ultimate goal of neuroengineering is a technological revolution, where machines would interact in real time with the brain. Machines and brains could interface, enabling normal function in cases of injury or disease, brain monitoring, and/or medical rehabilitation of brain disorders. Much current research in neuroengineering is focused on understanding the coding and processing of information in the sensory and motor systems, quantifying how this processing is altered in the pathological state, and how it can be manipulated through interactions with artificial devices including brain–computer interfaces and neuroprosthetics

    EEG Windowed statitical wavelet deviation for estimation of muscular artifacts

    Get PDF
    Electroencephalographic (EEG) recordings are, most of the times, corrupted by spurious artifacts, which should be rejected or cleaned by the practitioner. As human scalp EEG screening is error-prone, automatic artifact detection is an issue of capital importance, to ensure objective and reliable results. In this paper we propose a new approach for discrimination of muscular activity in the human scalp quantitative EEG (QEEG), based on the time-frequency shape analysis. The impact of the muscular activity on the EEG can be evaluated from this methodology. We present an application of this scoring as a preprocessing step for EEG signal analysis, in order to evaluate the amount of muscular activity for two set of EEG recordings for dementia patients with early stage of Alzheimer’s disease and control age-matched subjects

    Coherency and sharpness measures by using ICA algorithms. An investigation for Alzheimer’s disease discrimination

    Get PDF
    In this paper, we present a comprehensive study of different Independent Component Analysis (ICA) algorithms for the calculation of coherency and sharpness of electroencephalogram (EEG) signals, in order to investigate the possibility of early detection of Alzheimer’s disease (AD). We found that ICA algorithms can help in the artifact rejection and noise reduction, improving the discriminative property of features in high frequency bands (specially in high alpha and beta ranges). In addition to different ICA algorithms, the optimum number of selected components is investigated, in order to help decision processes for future works

    A Theta-Band EEG Based Index for Early Diagnosis of Alzheimer’s Disease

    Get PDF
    Despite recent advances, early diagnosis of Alzheimer’s disease (AD) from electroencephalography (EEG) remains a difficult task. In this paper, we offer an added measure through which such early diagnoses can potentially be improved. One feature that has been used for discriminative classification is changes in EEG synchrony. So far, only the decrease of synchrony in the higher frequencies has been deeply analyzed. In this paper, we investigate the increase of synchrony found in narrow frequency ranges within the θ band. This particular increase of synchrony is used with the well-known decrease of synchrony in the band to enhance detectable differences between AD patients and healthy subjects. We propose a new synchrony ratio that maximizes the differences between two populations. The ratio is tested using two different data sets, one of them containing mild cognitive impairment patients and healthy subjects, and another one, containing mild AD patients and healthy subjects. The results presented in this paper show that classification rate is improved, and the statistical difference between AD patients and healthy subjects is increased using the proposed ratio

    ICA Cleaning procedure for EEG signals analysis: application to Alzheimer's disease detection

    Get PDF
    To develop systems in order to detect Alzheimer’s disease we want to use EEG signals. Available database is raw, so the first step must be to clean signals properly. We propose a new way of ICA cleaning on a database recorded from patients with Alzheimer's disease (mildAD, early stage). Two researchers visually inspected all the signals (EEG channels), and each recording's least corrupted (artefact-clean) continuous 20 sec interval were chosen for the analysis. Each trial was then decomposed using ICA. Sources were ordered using a kurtosis measure, and the researchers cleared up to seven sources per trial corresponding to artefacts (eye movements, EMG corruption, EKG, etc), using three criteria: (i) Isolated source on the scalp (only a few electrodes contribute to the source), (ii) Abnormal wave shape (drifts, eye blinks, sharp waves, etc.), (iii) Source of abnormally high amplitude (�100 �V). We then evaluated the outcome of this cleaning by means of the classification of patients using multilayer perceptron neural networks. Results are very satisfactory and performance is increased from 50.9% to 73.1% correctly classified data using ICA cleaning procedure

    Differences of Functional Connectivity Brain Network in Emotional Judgment

    Get PDF
    Using combined emotional stimuli, combining photos of faces and recording of voices, we investigated the neural dynamics of emotional judgment using scalp EEG recordings. Stimuli could be either combioned in a congruent, or a non-congruent way.. As many evidences show the major role of alpha in emotional processing, the alpha band was subjected to be analyzed. Analysis was performed by computing the synchronization of the EEGs and the conditions congruent vs. non-congruent were compared using statistical tools. The obtained results demonstrate that scalp EEG ccould be used as a tool to investigate the neural dynamics of emotional valence and discriminate various emotions (angry, happy and neutral stimuli)

    Slowing and Loss of Complexity in Alzheimer's EEG: Two Sides of the Same Coin?

    Get PDF
    Medical studies have shown that EEG of Alzheimer's disease (AD) patients is “slower” (i.e., contains more low-frequency power) and is less complex compared to age-matched healthy subjects. The relation between those two phenomena has not yet been studied, and they are often silently assumed to be independent. In this paper, it is shown that both phenomena are strongly related. Strong correlation between slowing and loss of complexity is observed in two independent EEG datasets: (1) EEG of predementia patients (a.k.a. Mild Cognitive Impairment; MCI) and control subjects; (2) EEG of mild AD patients and control subjects. The two data sets are from different patients, different hospitals and obtained through different recording systems. The paper also investigates the potential of EEG slowing and loss of EEG complexity as indicators of AD onset. In particular, relative power and complexity measures are used as features to classify the MCI and MiAD patients versus age-matched control subjects. When combined with two synchrony measures (Granger causality and stochastic event synchrony), classification rates of 83% (MCI) and 98% (MiAD) are obtained. By including the compression ratios as features, slightly better classification rates are obtained than with relative power and synchrony measures alone

    EEG windowed statistical wavelet scoring for evaluation and discrimination of muscular artifacts

    Get PDF
    EEG recordings are usually corrupted by spurious extra-cerebral artifacts, which should be rejected or cleaned up by the practitioner. Since manual screening of human EEGs is inherently error prone and might induce experimental bias, automatic artifact detection is an issue of importance. Automatic artifact detection is the best guarantee for objective and clean results. We present a new approach, based on the time–frequency shape of muscular artifacts, to achieve reliable and automatic scoring. The impact of muscular activity on the signal can be evaluated using this methodology by placing emphasis on the analysis of EEG activity. The method is used to discriminate evoked potentials from several types of recorded muscular artifacts—with a sensitivity of 98.8% and a specificity of 92.2%. Automatic cleaning ofEEGdata are then successfully realized using this method, combined with independent component analysis. The outcome of the automatic cleaning is then compared with the Slepian multitaper spectrum based technique introduced by Delorme et al (2007 Neuroimage 34 1443–9)

    Chronic insomnia: are patients also suffering from PTSD symptoms?

    Get PDF
    IntroductionInsomnia is highly prevalent in the general population, and is commonly associated with somatic and psychiatric comorbidities. However, its origins remain poorly-understood. Recently, adverse childhood events (ACE), including traumatic experiences, have been found to be significantly associated with both insomnia and Post-Traumatic Stress Disorders (PTSD). Many patients with PTSD suffer from sleep disorders. However, we know much less about traumatic childhood experiences in patients with insomnia and PTSD.MethodsOur exploratory study investigated a cohort of 43 patients (14 males, 29 females) clinically diagnosed with chronic insomnia at a sleep center, and systematically evaluated their condition using the trauma history questionnaire (THQ), and the PTSD checklist (PCL-5).ResultsOur results show that 83.72% of insomnia patients reported at least one traumatic event, while the prevalence of PTSD symptoms was 53.49%. For 11.6% of patients, insomnia began in childhood, while for 27.07% it began in adolescence. PCL-5 scores were associated with higher Insomnia Severity Index (ISI) scores, but not trauma. ISI scores were also higher for women, and positive relationships were observed between ISI scores, PCL-5 scores and the number of self-reported traumatic events among women.ConclusionsThese exploratory results highlight that the relationship between PTSD symptoms and insomnia could be sex-specific. They also highlight the importance of PTSD symptoms screening for patients diagnosed with chronic insomnia
    corecore