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Abstract: To develop systems in order to detect Alzheimer’s disease we want to use EEG signals. Available database 

is raw, so the first step must be to clean signals properly. We propose a new way of ICA cleaning on a 

database recorded from patients with Alzheimer's disease (mildAD, early stage). Two researchers visually 

inspected all the signals (EEG channels), and each recording's least corrupted (artefact-clean) continuous 20 

sec interval were chosen for the analysis. Each trial was then decomposed using ICA. Sources were ordered 

using a kurtosis measure, and the researchers cleared up to seven sources per trial corresponding to artefacts 

(eye movements, EMG corruption, EKG, etc), using three criteria: (i) Isolated source on the scalp (only a 

few electrodes contribute to the source), (ii) Abnormal wave shape (drifts, eye blinks, sharp waves, etc.), 

(iii) Source of abnormally high amplitude ( 100 V). We then evaluated the outcome of this cleaning by 

means of the classification of patients using multilayer perceptron neural networks. Results are very 

satisfactory and performance is increased from 50.9% to 73.1% correctly classified data using ICA cleaning 

procedure.

1 INTRODUCTION 

Alzheimer’s disease (AD) is the most prevalent form 

of neuropathology leading to dementia; it affects 

approximately 25 million people worldwide and is 

expected to have a fast recrudescence in the near 

future (Ferri et al., 2006). Numerous clinical 

methods that are now available to detect this disease 

include brain imaging (Alexander, 2002), (Deweer 

et al., 1995), genetic studies (Tanzi and Bertram, 

2001), and other physiological markers (Andreasen 

et al., 2001).  

However, these methods cannot be employed for 

the mass screening of a large population. A 

combination of psychological tests, such as Mini-

mental score evaluation (MMSE), with 

electrophysiological analysis (e.g. 

electroencephalogram or EEG), would be a more 

efficient and inexpensive screening approach for 

detecting elderly subjects affected by AD. 

Independent component analysis (ICA) is a 

method for recovering underlying signals from 

linear mixtures of those signals. ICA draws upon 

higher-order signal statistics to determine a set of 

"components" which are maximally independent of 

each other.  

The aim of this paper is to apply ICA algorithms 

as a pre-processing stage with EEG signals in order 

to clean data. The evaluation of this cleaning 

procedure was calculated in terms of classification 

rate. Obtained results with clean data are much 

better that those obtained with raw data, hence the 

detection of Alzheimer's disease is simplified. 

2 EXPERIMENTAL DATA 

Experimental data comes from the Alzheimer 

rehabilitation database, recorded at Klinik für 

Psychiatrie, Psychosomatik und Psychotherapie der 

Johann Wolfgang Goethe-Universität, Frankfurt, 

Germany. A total number of 23 mild cognitive 

impairment patients affected by Alzheimer’s disease 

and followed clinically (labelled AD set) and a 31 
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age-matched controls (labelled Control set), where 

recorded via a 62 channel scalp montage plus a 

VEOG channel. This database was recorded in 

normal routine. Reference electrodes were placed 

between Fz and Cz, and between Cz and Pz. The 

sampling frequency was 500 Hz. 

3 ICA CLEANING PROCEDURE 

3.1 Methodology 

We apply EWASOBI (an Independent Component 

Analysis algorithm) with Kurtosis criteria for 

ordering independent components. The choice of 

this algorithm is based on work (Solé-Casals et al., 

2008) where many different ICA algorithms are 

investigated for EEG analysis.  The detailed 

description of the algorithm is neglected here; for 

relevant references see (Cichocki and Amari, 2002). 

The algorithm is implemented in MATLAB and 

available for download from the original 

contributors (Cichocki et al. WWW). 

The estimated output signal yt is assumed to be 

the source signals of interest up certain scaling and 

permutation ambiguity. In addition, as we are only 

interested in denoising or getting rid of specific 

component, we can set that specific output signal 

(say yi) to zero while keeping other components 

intact, and apply back projection procedure to 

recover the original scene. This is the key idea of our 

proposed cleaning procedure that we detail below: 

Two EEG researchers visually inspected EEGs, 

and each recording's least corrupted (artefact-clean) 

continuous 20 sec interval were chosen for the 

analysis. Each trial was then decomposed using ICA. 

Sources were ordered using a kurtosis measure, and 

the researchers cleared up to 1/3 sources per trial 

corresponding to artefacts (eye movements, EMG 

corruption, EKG, etc), using three criteria: 

1. Isolated source on the scalp (only a few 

electrodes contribute to the source) 

2. Abnormal wave shape (drifts, eye blinks, 

sharp waves, etc.) 

3. Source of abnormally high amplitude ( 100

V)

Once artefactual sources have been eliminated, 

remaining data are back-projected in order to 

recover the original scene but now the electrodes 

signals doesn't have the contribution of the 

considered artefactual sources.  

Absolute Fourier power is computed from 1 to 

25 Hz in a resolution of 1Hz. Fourier data has been 

grouped at different frequency bands, according to 

the typically used division on Delta (2 to 4 Hz.), 

Theta (4 to 8 Hz.), Alpha 1 (8 to 10 Hz.), Alpha 2 

(10 to 12 Hz.) and Beta (12 to 25 Hz.) bands. 

Finally, channels are also grouped in nine regions of 

interest: prefrontal, left frontal, right frontal, left 

temporal, central, right temporal, left parietal, right 

parietal and occipital. 

3.2 Graphical Examples 

Some graphical examples of how ICA cleaning 

procedure works are presented here. 

In Figure 1 we present a typical original EEG 

data with artefacts. 

Figure 1: Original EEG signals. Many artefacts can be 

seen in several parts of the time courses. 

Applying the detailed algorithm (Sec. 3.1), we can 

easily eliminate artefact and noise contributions. 

Figures 2 and 3 show some examples of the 

considered criteria for detecting and eliminating 

non-EEG sources.  

4 CLASSIFICATION 

4.1 Linear Discriminant Analysis 
(LDA)

Linear Discriminant Analysis (LDA) is a well-

known scheme for feature extraction and dimension 

reduction. It has been used widely in many 

applications involving high-dimensional data, such 

as face recognition and image retrieval. Classical 

LDA projects the data onto a lower-dimensional 

vector space such that the ratio of the between-class 

distances to the within-class distance is maximized, 

thus achieving maximum discrimination. The 

optimal  projection  (transformation)  can  be readily  
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Figure 2: On the top a similar-like EEG signal (in blue); and on the down the back-projected signal to EEG sensors. In this 

example, the signals came (almost) from the 14th electrode, so we decide to eliminate this independent component (case 1, 

isolated source on the scalp). 

Figure 3: On the top a clearly non EEG signal (in blue); and on the down the back-projected signal to EEG sensors. In this 

case it is easy to decide that independent component labelled as y23 (the blue one on the left part of the figure) must be 

eliminated (case 2, abnormal wave shape). 

computed by applying the eigendecomposition on 

the scatter matrices. See (Duda et al., 2000) 

(Fukunaga, 1990) for details on the algorithm. 

As a first experiment we use LDA in order to 

classify between Alzheimer and Control patients, 

using all the available frequency bands. As we don't 

have a very huge database, a leave-one-out 

procedure is used. In this leave-one-out cross-

validation scheme of N observations, N-1 are used 

for training and the last is used for evaluation. This 

process is repeated N times, leaving one different 

observation for evaluation each time. The mean 

success classification value in percentage (%) is 

obtained as a final result. 

As we are interested in testing the cleaning 

procedure, we will compare results obtained with 

raw data and with cleaned data. Of course, as our 

classification problem is not linear, obtained results 

will be poor, but in any case they can be used as a 

lower bound.  

Figure 4: Classification results obtained with LDA. Black 

bar corresponds to raw data (47.37 % of classification 

success) and white bar to clean data (53.85 % of 

classification success). 

Raw Clean
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In figure 4 we present the % of classification 

success obtained with LDA, for raw data (black bar) 

and clean data (white bar), using all 5 frequency 

bands as features (see section 3.1). 

Even if results are not sufficiently good, cleaning 

procedure improves the results in 6.48 %, from 

47.37 % to 53.85 %.

4.2 Neural Network 

In recent years several classification systems have 

been implemented using different techniques, such 

as Neural Networks.  

The widely used Neural Networks techniques are 

very well known in pattern recognition applications. 

An artificial neural network (ANN) is a 

mathematical model that tries to simulate the 

structure and/or functional aspects of biological 

neural networks. It consists of an interconnected 

group of artificial neurons and processes information 

using a connectionist approach to computation. In 

most cases an ANN is an adaptive system that 

changes its structure based on external or internal 

information that flows through the network during 

the learning phase.  

Neural networks are non-linear statistical data 

modelling tools. They can be used to model complex 

relationships between inputs and outputs or to find 

patterns in data.  

One of the simplest ANN is the so called 

perceptron that consist of a simple layer that 

establishes its correspondence with a rule of 

discrimination between classes based on the linear 

discriminator. However, it is possible to define 

discriminations for non-linearly separable classes 

using multilayer perceptrons (MLP).  

The Multilayer Perceptron (Multilayer Perceptron, 

MLP), also known as Backpropagation Net (BPN) is 

one of the best known and used artificial neural 

network model as pattern classifiers and functions 

approximators (Lippman, 1987), (Freeman and 

Skapura, 1991). It belongs to the so-called 

feedforward networks class, and its topology is 

composed by different fully interconnected layers of 

neurons, where the information always flows from 

the input layer, whose only role is to send input data 

to the rest of the network, toward the output layer, 

crossing all the existing layers (called hidden layers) 

between the input and output. Essentially the inner 

layers are responsible for carrying out information 

processing, extracting features of the input data. 

Although there are many variants, usually each 

neuron in one layer has directed connections to the 

neurons of the subsequent layer but there is no 

connection or interaction between neurons on the 

same layer. (Bishop, 1995) (Hush and Horne, 1993).  

In this work we have used a multilayer perceptron 

with one hidden layer of several different neurons 

(nodes), obtained empirically in each case. Each 

neuron is associated with weights and biases. These 

weights and biases are set to each connections of the 

network and are obtained from training in order to 

make their values suitable for the classification task 

between the different classes. 

The number of input neurons is equal to the 

number of frequency bands considered, and the 

number of output neurons is just one as we needs to 

discriminate between only two classes (binary 

problem). 

As showed before, LDA with cleaned data 

obtains better results, with an improvement of 6.48 

%. But for classification purposes, these results are 

poor and are not useful at all. Hence, we will 

conduct some experiments with neural networks, 

particularly with multi-layer perceptrons as a 

classification system. As now we have a non-linear 

classifier we expect to increase the percentage of 

classification success. 

Figure 5: Classification results obtained with MLP. Black 

bar corresponds to raw data (60.38 % of classification 

success) and white bar to clean data (73.08 % of 

classification success). 

All the experiments are done with a MLP with 

one hidden layer of 50 units with a logistic nonlinear 

function and trained with a scaled conjugate gradient 

(SCG) algorithm (Moller, 1993) to find a local 

minimum of the function error function. Using SCG 

algorithm we avoid the linear search per learning 

iteration by using Levenberg-Marquardt way of 

Raw Clean
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scaling the step size, and hence the computational 

time is reduced.  

As done in LDA case, leave-one-out cross-

validation scheme is used and the mean success 

classification value in percentage (%) is obtained as 

a final result. 

In figure 5 we present the results obtained, as in 

the LDA case, using all 5 frequency bands available 

as input features. As expected, results are much 

better, and also the classification success is 

increased using cleaned data (%) instead of raw data 

(%). The difference between clean and raw data is 

now of 12.70 %, higher than this obtained in LDA 

case.

In order to investigate which frequency band is 

more useful for classification purposes, we perform 

experiments with MLP and leave-one-out cross-

validation scheme, using only one frequency band at 

each time. Numerical values are presented in table 1 

and graphical results are shown in figure 6. 

In all the frequency bands, cleaned data obtains 

better results than raw data, with a minimum 

increase of about 13%. Best case of classification 

rate for cleaned data is obtained for Alpha2 band (10 

to 12 Hz.), with a value of 73.08 %, the same value 

obtained if we use all the frequency bands as input 

features. 

Table 1: Classification results obtained for each frequency 

band as input feature. 

Raw data Clean data 

Delta 50.94 % Delta 67.31 % 

Theta 50.94 % Theta 63.46 % 

Alpha 1 32.07 % Alpha 1 67.31 % 

Alpha 2 49.06 % Alpha 2 73.08 % 

Beta 37.73 % Beta 51.92 % 

5 CONCLUSIONS 

In this paper we have presented a new procedure for 

cleaning EEG signals based in ICA algorithm. The 

main idea is to eliminate independent components 

that clearly are not plausible as EEG signals 

(abnormal shape; abnormal amplitude; isolated 

source on the scalp). Key point is the kurtosis 

ordering of the independent components that helps 

in detecting these non-EEG components. A back-

projection is done in order to retrieve the cleaned 

signals and mean value of Fourier power is 

performed with the results obtained by two different 

researchers. 

Figure 6: Classification results obtained with MLP. Each 

group corresponds to an experiment with only one 

frequency band, labelled as 1 to 5 in the same order as 

detailed in section 3.1. Black bar corresponds to raw data 

and white bar to clean data. 

 Performance of the procedure is demonstrated by 

classifying EEG signals from Alzheimer patients 

versus control patients. Both LDA and MLP 

classification systems are investigated and cleaned 

data obtains always better results. Using all the 

frequency bands as input data, we improve results 

from 60.38% to 73.08%. Using only one frequency 

band, a 73.08 % of classification success (best 

cased) is obtained with Alpha2 band (10 to 12 Hz.), 

against 50.94 % of classification success obtained 

with raw data in the best case (Delta and Theta 

bands).  
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