23 research outputs found

    Clarifying CLARITY: Quantitative optimization of the diffusion based delipidation protocol for genetically labeled tissue

    Get PDF
    Tissue clarification has been recently proposed to allow deep tissue imaging without light scattering. The clarification parameters are somewhat arbitrary and dependent on tissue type, source and dimension: Every laboratory has its own protocol, but a quantitative approach to determine the optimum clearing time is still lacking. Since the use of transgenic mouse lines that express fluorescent proteins to visualize specific cell populations is widespread, a quantitative approach to determine the optimum clearing time for genetically labeled neurons from thick murine brain slices using CLARITY2 is described. In particular, as the main objective of the delipidation treatment is to clarify tissues, while limiting loss of fluorescent signal, the "goodness" of clarification was evaluated by considering the bulk tissue clarification index (BTCi) and the fraction of the fluorescent marker retained in the slice as easily quantifiable macroscale parameters. Here we describe the approach, illustrating an example of how it can be used to determine the optimum clearing time for 1 mm-thick cerebellar slice from transgenic L7GFP mice, in which Purkinje neurons express the GFP (green fluorescent protein) tag. To validate the method, we evaluated confocal stacks of our samples using standard image processing indices (i.e., the mean pixel intensity of neurons and the contrast-to-noise ratio) as figures of merit for image quality. The results show that detergent-based delipidation for more than 5 days does not increase tissue clarity but the fraction of GFP in the tissue continues to diminish. The optimum clearing time for 1 mm-thick slices was thus identified as 5 days, which is the best compromise between the increase in light penetration depth due to removal of lipids and a decrease in fluorescent signal as a consequence of protein loss: Further clearing does not improve tissue transparency, but only leads to more protein removal or degradation. The rigorous quantitative approach described can be generalized to any clarification method to identify the moment when the clearing process should be terminated to avoid useless protein loss

    Acetaldehyde and parkinsonism: role of CYP450 2E1.

    Get PDF
    The present review update the relationship between acetaldehyde (ACE) and parkinsonism with a specific focus on the role of P450 system and CYP 2E1 isozyme particularly. We have indicated that ACE is able to enhance the parkinsonism induced in mice by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a neurotoxin able to damage the nigrostriatal dopaminergic pathway. Similarly diethyldithiocarbamate, the main metabolite of disulfiram, a drug widely used to control alcoholism, diallylsulfide (DAS) and phenylisothiocyanate also markedly enhance the toxin-related parkinsonism. All these compounds are substrate/inhibitors of CYP450 2E1 isozyme. The presence of CYP 2E1 has been detected in the dopamine (DA) neurons of rodent Substantia Nigra (SN), but a precise function of the enzyme has not been elucidated yet. By treating CYP 2E1 knockout (KO) mice with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, the SN induced lesion was significantly reduced when compared with the lesion observed in wild-type animals. Several in vivo and in vitro studies led to the conclusion that CYP 2E1 may enhance the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in mice by increasing free radical production inside the dopaminergic neurons. ACE is a good substrate for CYP 2E1 enzyme as the other substrate-inhibitors and by this way may facilitate the susceptibility of dopaminergic neurons to toxic events. The literature suggests that ethanol and/or disulfiram may be responsible for toxic parkinsonism in human and it indicates that basal ganglia are the major targets of disulfiram toxicity. A very recent study reports that there are a decreased methylation of the CYP 2E1 gene and increased expression of CYP 2E1 mRNA in Parkinson's disease (PD) patient brains. This study suggests that epigenetic variants of this cytochrome contribute to the susceptibility, thus confirming multiples lines of evidence which indicate a link between environmental toxins and P

    Grafted Neural Precursors Integrate Into Mouse Striatum, Differentiate and Promote Recovery of Function Through Release of Erythropoietin in MPTP-Treated Mice.

    Get PDF
    Erythropoietin-releasing neural precursor cells (Er-NPCs) are a subclass of subventricular zone-derived neural progenitors, capable of surviving for 6 hr after death of donor. They present higher neural differentiation. Here, Er-NPCs were studied in animal model of Parkinson's disease. Dopaminergic degeneration was caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intraperitoneal administration in C57BL/6 mice. The loss of function was evaluated by specific behavioral tests. Er-NPCs (2.5 × 105) expressing the green fluorescent protein were administered by stereotaxic injection unilaterally in the left striatum. At the end of observational research period (2 weeks), most of the transplanted Er-NPCs were located in the striatum, while several had migrated ventrally and caudally from the injection site, up to ipsilateral and contralateral substantia nigra. Most of transplanted cells had differentiated into dopaminergic, cholinergic, or GABAergic neurons. Er-NPCs administration also promoted a rapid functional improvement that was already evident at the third day after cells administration. This was accompanied by enhanced survival of nigral neurons. These effects were likely promoted by Er-NPCs-released erythropoietin (EPO), since the injection of Er-NPCs in association with anti-EPO or anti-EPOR antibodies had completely neutralized the recovery of function. In addition, intrastriatal administration of recombinant EPO mimics the effects of Er-NPCs. We suggest that Er-NPCs, and cells with similar properties, may represent good candidates for cellular therapy in neurodegenerative disorders of this kind

    Bright light exposure reduces TH-positive dopamine neurons: Implications of light pollution in Parkinson\u27s disease epidemiology

    Get PDF
    This study explores the effect of continuous exposure to bright light on neuromelanin formation and dopamine neuron survival in the substantia nigra. Twenty-one days after birth, Sprague–Dawley albino rats were divided into groups and raised under different conditions of light exposure. At the end of the irradiation period, rats were sacrificed and assayed for neuromelanin formation and number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra. The rats exposed to bright light for 20 days or 90 days showed a relatively greater number of neuromelanin-positive neurons. Surprisingly, TH-positive neurons decreased progressively in the substantia nigra reaching a significant 29% reduction after 90 days of continuous bright light exposure. This decrease was paralleled by a diminution of dopamine and its metabolite in the striatum. Remarkably, in preliminary analysis that accounted for population density, the age and race adjusted Parkinson's disease prevalence significantly correlated with average satellite-observed sky light pollution

    Bright light exposure reduces TH-positive dopamine neurons: implications of light pollution in Parkinson's disease epidemiology.

    Get PDF
    This study explores the effect of continuous exposure to bright light on neuromelanin formation and dopamine neuron survival in the substantia nigra. Twenty-one days after birth, Sprague-Dawley albino rats were divided into groups and raised under different conditions of light exposure. At the end of the irradiation period, rats were sacrificed and assayed for neuromelanin formation and number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra. The rats exposed to bright light for 20 days or 90 days showed a relatively greater number of neuromelanin-positive neurons. Surprisingly, TH-positive neurons decreased progressively in the substantia nigra reaching a significant 29% reduction after 90 days of continuous bright light exposure. This decrease was paralleled by a diminution of dopamine and its metabolite in the striatum. Remarkably, in preliminary analysis that accounted for population density, the age and race adjusted Parkinson's disease prevalence significantly correlated with average satellite-observed sky light pollution

    WSES/GAIS/SIS-E/WSIS/AAST global clinical pathways for patients with intra-abdominal infections

    Get PDF
    Intra-abdominal infections (IAIs) are common surgical emergencies and have been reported as major contributors to non-trauma deaths in hospitals worldwide. The cornerstones of effective treatment of IAIs include early recognition, adequate source control, appropriate antimicrobial therapy, and prompt physiologic stabilization using a critical care environment, combined with an optimal surgical approach. Together, the World Society of Emergency Surgery (WSES), the Global Alliance for Infections in Surgery (GAIS), the Surgical Infection Society-Europe (SIS-E), the World Surgical Infection Society (WSIS), and the American Association for the Surgery of Trauma (AAST) have jointly completed an international multi-society document in order to facilitate clinical management of patients with IAIs worldwide building evidence-based clinical pathways for the most common IAIs. An extensive non-systematic review was conducted using the PubMed and MEDLINE databases, limited to the English language. The resulting information was shared by an international task force from 46 countries with different clinical backgrounds. The aim of the document is to promote global standards of care in IAIs providing guidance to clinicians by describing reasonable approaches to the management of IAIs.Peer reviewe

    Serotonin abnormalities in engrailed-2 knockout mice: new insight relevant for a model of autism spectrum disorder

    No full text
    Autism spectrum disorder (ASD) is a congenital neurodevelopmental behavioral disorder that appears in early childhood. Recent human genetic studies identified the homeobox transcription factor, Engrailed 2 (EN2), as a possible ASD susceptibility gene. En2 knockout mice (En2-/-) display subtle cerebellar neuropathological changes and reduced levels of tyrosine hydroxylase, noradrenaline and serotonin in the hippocampus and cerebral cortex similar to those ones which have been observed in the ASD brain. Furthermore other similarities link En2 knockout mice to ASD patients. Several lines of evidence suggest that serotonin may play an important role in the pathophysiology of the disease. In the present study we measured, by using an HPLC, the 5-HT levels in different brain areas and at different ages in En2-/- mice. In the frontal and occipital cortex, the content of 5HT was reduced in En2-/- 1 and 3 months old mice; in 6 month old mice, the difference was still present, but it was not statistically significant. The 5-HT content of cerebellar cortex was significantly reduced at 1 month old but significantly high when the KO mice reached 3 months of age. The increase was present even at 6 months of age. A similar trend was highlighted by SERT immunolabeling in En2-/- mice compared to control in the same areas and age analyzed. Our findings, in agreement with the current knowledge on the 5-HT system alterations in ASD, confirm the early neurotransmitter deficit with a late compensatory recovery in En2 KO-mice further suggesting that this experimental animal may be considered a good predictive model for the human disease

    Glial cells are affected more than interneurons by the loss of Engrailed 2 gene in the mouse cerebellum

    No full text
    : Glial cells play a pivotal role in the inflammatory processes, which are common features of several neurodevelopmental and neurodegenerative disorders. Their major role in modulating neuroinflammation underscores their significance in these conditions. Engrailed-2 knockout mice (En2-/- ) are considered a valuable model for autism spectrum disorder (ASD) due to their distinctive neuroanatomical and behavioral traits. Given the higher prevalence of ASD in males, our objective was to investigate glial and interneuron alterations in the cerebellum of En2-/- mice compared with wild-type (WT) mice in both sexes. We employed immunohistochemical analysis to assess cell density for all cell types studied and analyzed the area (A) and shape factor (SF) of microglia cell bodies. Our findings revealed the following: (a) In WT mice, the density of microglia and astrocytes was higher in females than in males, while interneuron density was lower in females. Notably, in En2-mutant mice, these differences between males and females were not present. (b) In both male and female En2-/- mice, astrocyte density exceeded that in WT mice, with microglia density being greater only in females. (c) In WT females, microglia cell bodies exhibited a larger area and a lower shape factor compared to WT males. Remarkably, the En2 mutation did not appear to influence these sex-related differences. (d) In both male and female En2-/- mice, we observed a consistent pattern: microglia cell bodies displayed a larger area and a smaller shape factor. Given the ongoing debate surrounding the roles of glia and sex-related factors in ASD, our observations provide valuable insights into understanding how an ASD-associated gene En2 affects specific cell types in the cerebellum

    MPTP-induced model of Parkinson's disease in cytochrome P450 2E1 knockout mice

    No full text
    Evidence for involvement of cytochrome P450 2E1 in the MPTP-induced mouse model of PD has been reported [Vaglini, F., Pardini, C., Viaggi, C., Bartoli, C., Dinucci, D., Corsini, G.U., 2004. Involvement of cytochrome P450 2E1 in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease. J. Neurochem. 91, 285-298]. We studied the sensitivity of Cyp2e1(-/-) mice to the acute administration of MPTP in comparison with their wild-type counterparts. In Cyp2e1(-/-) mice, the reduction of striatal DA content was less pronounced 7 days after MPTP treatment compared to treated wild-type mice. Similarly, TH immunoreactivity analysis of the substantia nigra of Cyp2e1(-/-) mice did not show any neuronal lesions after MPTP treatment. In contrast to this, wild-type animals showed a minimal but significant lesioning by the toxin as evaluated also by means of non-stereologic computerized assisted analysis of this brain area. Striatal levels of DA metabolites after 7 days were variably affected by the toxin, but consistent differences between the two animal strains were not observed. We evaluated short-term changes in the levels of striatal DA and its metabolites, and we monitored striatal MPP(+) levels. Striatal MPP(+) was cleared more rapidly in Cyp2e1(-/-) mice than in wild-type animals and, consistently, striatal DA content decreased faster in Cyp2e1(-/-) mice than in wild-type animals, and 3-methoxytyramine and HVA levels showed an early and sharp rise. Our findings suggest that Cyp2e1(-/-) mice are weakly sensitive to MPTP-induced brain lesions, markedly in contrast with a protective role of the enzyme as suggested previously. The differences observed between the knockout mice and their wild-type counterparts are modest and may be due to an efficient compensatory mechanism or genetic drift in the colonie
    corecore