6,902 research outputs found

    Unsolved problems in the lowermost mantle

    Get PDF
    Many characteristics of D '' layer may be attributed to the recently discovered MgSiO3 post-perovskite phase without chemical heterogeneities. They include a sharp discontinuity at the top of D '', regional variation in seismic anisotropy, and a steep Clapeyron slope. However, some features remain unexplained. The seismically inferred velocity jump is too large in comparison to first principles calculations, and the sharpness of the discontinuity may require a chemical boundary. Chemical heterogeneity may play an important role in addition to the phase transformation from perovskite to post-perovskite. Phase transformation and chemical heterogeneity and the attendant changes in physical properties, such as rheology and thermal conductivity, are likely to play competing roles in defining the dynamical stability of the D '' layer. Revealing the relative roles between phase transition and chemical anomalies is an outstanding challenge in the study of the role of D '' in thermal-chemical evolution of the Earth

    Muscle action potential scans and ultrasound imaging in neurofibromatosis type 2

    Get PDF
    INTRODUCTION: The neuropathy in patients with neurofibromatosis type 2 (NF2) is difficult to quantify and follow up. In this study we compared 3 methods that may help assess motor axon pathology in NF2 patients. METHODS: Nerve conduction studies in median nerves were supplemented by deriving motor unit number estimates (MUNEs) from compound muscle action potential (CMAP) scans and by high-resolution ultrasound (US) peripheral nerve imaging. RESULTS: CMAP amplitudes and nerve conduction velocity were normal in the vast majority of affected individuals, but CMAP scan MUNE revealed denervation and reinnervation in many peripheral nerves. In addition, nerve US imaging enabled monitoring of the size and number of schwannoma-like fascicular enlargements in median nerve trunks. CONCLUSION: In contrast to conventional nerve conduction studies, CMAP scan MUNE in combination with US nerve imaging can quantify the NF2-associated neuropathy and may help to monitor disease progression and drug treatments

    Brain activation covaries with reported criminal behaviors when making risky choices: A fuzzy-trace theory approach

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Psychological Association via the DOI in this record.Criminal behavior has been associated with abnormal neural activity when people experience risks and rewards or exercise inhibition. However, neural substrates of mental representations that underlie criminal and noncriminal risk-taking in adulthood have received scant attention. We take a new approach, applying fuzzy-trace theory, to examine neural substrates of risk preferences and criminality. We extend ideas about gist (simple meaning) and verbatim (precise risk-reward tradeoffs) representations used to explain adolescent risk-taking to uncover neural correlates of developmentally inappropriate adult risk-taking. We tested predictions using a risky-choice framing task completed in the MRI scanner, and examined neural covariation with self-reported criminal and noncriminal risk-taking. As predicted, risk-taking was correlated with a behavioral pattern of risk preferences called “reverse framing” (preferring sure losses over a risky option and a risky option over sure gains, the opposite of typical framing biases) that has been linked to risky behavior in adolescents and is rarely observed in nondisordered adults. Experimental manipulations confirmed processing interpretations of typical framing (gist-based) and reverse-framing (verbatim-based) risk preferences. In the brain, covariation with criminal and noncriminal risk-taking was observed predominantly when subjects made reverse-framing choices. Noncriminal risk-taking behavior was associated with emotional reactivity (amygdala) and reward motivation (striatal) areas, whereas criminal behavior was associated with greater activation in temporal and parietal cortices, their junction, and insula. When subjects made more developmentally typical framing choices, reflecting non-preferred gist processing, activation in dorsolateral prefrontal cortex covaried with criminal risk-taking, which may reflect cognitive effort to process gist while inhibiting preferred verbatim processin

    Zigzag-shaped nickel nanowires via organometallic template-free route

    Get PDF
    In this manuscript, the formation of nickel nanowires (average size: several tens to hundreds of μm long and 1.0-1.5 μm wide) at low temperature is found to be driven by dewetting of liquid organometallic precursors during spin coating process and by self-assembly of Ni clusters. Elaboration of metallic thin films by low temperature deposition technique makes the preparation process compatible with most of the substrates. The use of iron and cobalt precursor shows that the process could be extended to other metallic systems. In this work, AFM and SEM are used to follow the assembly of Ni clusters into straight or zigzag lines. The formation of zigzag structure is specific to the Ni precursor at appropriate preparation parameters. This template free process allows a control of anisotropic structures with homogeneous sizes and angles on standard Si/SiO2 surface

    NDUFAF5 Hydroxylates NDUFS7 at an Early Stage in the Assembly of Human Complex I.

    Get PDF
    Complex I (NADH ubiquinone oxidoreductase) in mammalian mitochondria is an L-shaped assembly of 45 proteins. One arm lies in the inner membrane, and the other extends about 100 Å into the matrix of the organelle. The extrinsic arm contains binding sites for NADH, the primary electron acceptor FMN, and seven iron-sulfur clusters that form a pathway for electrons linking FMN to the terminal electron acceptor, ubiquinone, which is bound in a tunnel in the region of the junction between the arms. The membrane arm contains four antiporter-like domains, energetically coupled to the quinone site and involved in pumping protons from the matrix into the intermembrane space contributing to the proton motive force. Seven of the subunits, forming the core of the membrane arm, are translated from mitochondrial genes, and the remaining subunits, the products of nuclear genes, are imported from the cytosol. Their assembly is coordinated by at least thirteen extrinsic assembly factor proteins that are not part of the fully assembled complex. They assist in insertion of co-factors and in building up the complex from smaller sub-assemblies. One such factor, NDUFAF5, belongs to the family of seven-β-strand S-adenosylmethionine-dependent methyltransferases. However, similar to another family member, RdmB, it catalyzes the introduction of a hydroxyl group, in the case of NDUFAF5, into Arg-73 in the NDUFS7 subunit of human complex I. This modification occurs early in the pathway of assembly of complex I, before the formation of the juncture between peripheral and membrane arms.This work was supported by the Medical Research Council via Intramural Program U105663150 and Program Grant MR/M009858/1 (to J. E. W.)

    A Distinguished Vacuum State for a Quantum Field in a Curved Spacetime: Formalism, Features, and Cosmology

    Full text link
    We define a distinguished "ground state" or "vacuum" for a free scalar quantum field in a globally hyperbolic region of an arbitrarily curved spacetime. Our prescription is motivated by the recent construction of a quantum field theory on a background causal set using only knowledge of the retarded Green's function. We generalize that construction to continuum spacetimes and find that it yields a distinguished vacuum or ground state for a non-interacting, massive or massless scalar field. This state is defined for all compact regions and for many noncompact ones. In a static spacetime we find that our vacuum coincides with the usual ground state. We determine it also for a radiation-filled, spatially homogeneous and isotropic cosmos, and show that the super-horizon correlations are approximately the same as those of a thermal state. Finally, we illustrate the inherent non-locality of our prescription with the example of a spacetime which sandwiches a region with curvature in-between flat initial and final regions

    Limitations on the ability to negotiate justice: Attorney perspectives on guilt, innocence, and legal advice in the current plea system

    Get PDF
    This is the author accepted manuscript. The final version is available from Taylor & Francis via the DOI in this recordIn the American criminal justice system the vast majority of criminal convictions occur as the result of guilty pleas, often made as a result of plea bargains, rather than jury trials. The incentives offered in exchange for guilty pleas mean that both innocent and guilty defendants plead guilty. We investigate the role of attorneys in this context, through interviews with criminal defense attorneys. We examine defense attorney perspectives on the extent to which innocent defendants are (and should be) pleading guilty in the current legal framework and their views of their own role in this complex system. We also use a hypothetical case to probe the ways in which defense attorneys consider guilt or innocence when providing advice on pleas. Results indicate that attorney advice is influenced by guilt or innocence, but also that attorneys are limited in the extent to which they can negotiate justice for their clients in a system in which uncertainty and large discrepancies between outcomes of guilty pleas and conviction at trial can make it a sensible option to plead guilty even when innocent. Results also suggest conflicting opinions over the role of the attorney in the plea-bargaining process

    Human METTL20 methylates lysine residues adjacent to the recognition loop of the electron transfer flavoprotein in mitochondria.

    Get PDF
    In mammalian mitochondria, protein methylation is a relatively uncommon post-transcriptional modification, and the extent of the mitochondrial protein methylome, the modifying methyltransferases, and their substrates have been little studied. As shown here, the β-subunit of the electron transfer flavoprotein (ETF) is one such methylated protein. The ETF is a heterodimer of α- and β-subunits. Lysine residues 199 and 202 of mature ETFβ are almost completely trimethylated in bovine heart mitochondria, whereas ETFα is not methylated. The enzyme responsible for the modifications was identified as methyltransferase-like protein 20 (METTL20). In human 143B cells, the methylation of ETFβ is less extensive and is diminished further by suppression of METTL20. Tagged METTL20 expressed in HEK293T cells specifically associates with the ETF and promotes the trimethylation of ETFβ lysine residues 199 and 202. ETF serves as a mobile electron carrier linking dehydrogenases involved in fatty acid oxidation and one-carbon metabolism to the membrane-associated ubiquinone pool. The methylated residues in ETFβ are immediately adjacent to a protein loop that recognizes and binds to the dehydrogenases. Suppression of trimethylation of ETFβ in mouse C2C12 cells oxidizing palmitate as an energy source reduced the consumption of oxygen by the cells. These experiments suggest that the oxidation of fatty acids in mitochondria and the passage of electrons via the ETF may be controlled by modulating the protein-protein interactions between the reduced dehydrogenases and the β-subunit of the ETF by trimethylation of lysine residues. METTL20 is the first lysine methyltransferase to be found to be associated with mitochondria.This work was supported by the Medical Research Council (MRC), UK

    Cosmological attractor models and higher curvature supergravity

    Get PDF
    We study cosmological \u3b1-attractors in superconformal/supergravity models, where \u3b1 is related to the geometry of the moduli space. For \u3b1 = 1 attractors [1] we present a generalization of the previously known manifestly superconformal higher curvature supergravity model [2]. The relevant standard 2-derivative supergravity with a minimum of two chiral multiplets is shown to be dual to a 4-derivative higher curvature supergravity, where in general one of the chiral superfields is traded for a curvature superfield. There is a degenerate case when both matter superfields become non-dynamical and there is only a chiral curvature superfield, pure higher derivative supergravity. Generic \u3b1-models [3] interpolate between the attractor point at \u3b1 = 0 and generic chaotic inflation models at large \u3b1, in the limit when the inflaton moduli space becomes flat. They have higher derivative duals with the same number of matter fields as the original theory or less, but at least one matter multiplet remains. In the context of these models, the detection of primordial gravity waves will provide information on the curvature of the inflaton submanifold of the K\ue4hler manifold, and we will learn if the inflaton is a fundamental matter multiplet, or can be replaced by a higher derivative curvature excitation. \ua9 2014 The Author(s)

    Starobinsky-like inflation in no-scale supergravity Wess-Zumino model with Polonyi term

    Full text link
    We propose a simple modification of the no-scale supergravity Wess-Zumino model of Starobinsky-like inflation to include a Polonyi term in the superpotential. The purpose of this term is to provide an explicit mechanism for supersymmetry breaking at the end of inflation. We show how successful inflation can be achieved for a gravitino mass satisfying the strict upper bound m3/2<103m_{3/2}< 10^3 TeV, with favoured values m3/2O(1)m_{3/2}\lesssim\mathcal{O}(1) TeV. The model suggests that SUSY may be discovered in collider physics experiments such as the LHC or the FCC.Comment: 13 pages, 4 figure
    corecore