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Abstract 

 Criminal behavior has been associated with abnormal neural activity when people experience 

risks and rewards or exercise inhibition.  However, neural substrates of mental representations 

that underlie criminal and noncriminal risk-taking in adulthood have received scant attention. We 

take a new approach, applying fuzzy-trace theory, to examine neural substrates of risk 

preferences and criminality.  We extend ideas about gist (simple meaning) and verbatim (precise 

risk-reward tradeoffs) representations used to explain adolescent risk-taking to uncover neural 

correlates of developmentally inappropriate adult risk-taking.  We tested predictions using a 

risky-choice framing task completed in the MRI scanner, and examined neural covariation with 

self-reported criminal and noncriminal risk-taking.  As predicted, risk-taking was correlated with 

a behavioral pattern of risk preferences called “reverse framing” (preferring sure losses over a 

risky option and a risky option over sure gains, the opposite of typical framing biases) that has 

been linked to risky behavior in adolescents and is rarely observed in nondisordered adults.  

Experimental manipulations confirmed processing interpretations of typical framing (gist-based) 

and reverse-framing (verbatim-based) risk preferences.  In the brain, covariation with criminal 

and noncriminal risk-taking was observed predominantly when subjects made reverse-framing 

choices.  Noncriminal risk-taking behavior was associated with emotional reactivity (amygdala) 

and reward motivation (striatal) areas, whereas criminal behavior was associated with greater 

activation in temporal and parietal cortices, their junction, and insula.  When subjects made more 

developmentally typical framing choices, reflecting non-preferred gist processing, activation in 

dorsolateral prefrontal cortex covaried with criminal risk-taking, which may reflect cognitive 

effort to process gist while inhibiting preferred verbatim processing. 

Keywords: risky decision-making; risk-taking; psychopathy; mental representation; parietal 

cortex
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Brain Activation Covaries with Reported Criminal Behaviors When Making Risky Choices: A 

Fuzzy-Trace Theory Approach 

Criminal behavior is one manifestation of heightened risk-taking, which peaks in 

adolescence for most individuals, but continues through adulthood for others (Cohen & Casey, 

2014; Moffitt, 1993).  Crime has been analyzed as a reasoned choice balancing risks (e.g., of 

getting caught) against rewards (e.g., of money or drugs; Matsueda, 2013) and as an impulsive or 

reactive choice in which emotions and desires overwhelm self-control (Casey, Galvan, & 

Somerville, 2016), among other approaches (see Sweeten, Piquero, & Steinberg, 2013).  In this 

study, we take a new and theoretically based approach to examining the neural substrates of risk 

preferences and criminality grounded in fuzzy-trace theory (FTT; Reyna, 2012).  In particular, 

we extend ideas about mental representation that have been used to explain adolescent risk-

taking to uncover the neural correlates of developmentally inappropriate adult risk-taking that 

crosses the line into criminal behavior. 

Prior research on neural substrates has related criminal behavior to differential processing 

of rewards and incentives (Buckholtz et al., 2010; Cohn et al., 2015; Pujara, Motzkin, Newman, 

Kiehl, & Koenigs, 2013), reduced attention and inhibition (Aharoni et al., 2013; Banich et al., 

2007; Freeman et al., 2015; Larson et al., 2013; Pujol et al., 2012), and abnormal processing of 

emotional and moral stimuli (Birbaumer et al., 2005; Carre, Hyde, Neumann, Viding, & Hariri, 

2013; Marsh & Cardinale, 2012).  Broadly consistent with this work, FTT incorporates 

influences of reward sensitivity, emotion, and inhibition on risky decision-making (Reyna & 

Casillas, 2009; Reyna, Wilhelms, McCormick, & Weldon, 2015).  However, FTT adds a 

cognitive distinction between verbatim (literal and precise) and gist (bottom-line meaning) 
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mental representations that are relied on in decision-making (Kwak, Payne, Cohen, & Huettel, 

2015; Mills, Reyna, & Estrada, 2008; Reyna et al., 2015; White, Gummerum, & Hanoch, 2015).   

Specifically, reliance on verbatim and gist representations varies developmentally and 

across individuals in ways that affect risk preferences (for a review, see Reyna & Brainerd, 

2011).  We apply these tenets of FTT to make predictions about criminal risky decisions, which 

we characterize as developmentally less advanced compared to decisions of non-disordered 

adults (see Shannon et al., 2011, for an analogous developmental argument).   

Background: Mental Representations and Risk Taking 

To understand FTT’s predictions, consider that any decision can be described in terms of 

probabilities and outcomes (e.g., rewards) associated with each option (Tversky & Kahneman, 

1986).  Traditionally, theories have assumed that decision makers trade off risk and reward:  

Given a choice between receiving $10 for sure versus a 1/3 chance to receive $30 and a 2/3 

chance to receive nothing, a larger reward ($30 vs. $10) can compensate for a smaller probability 

of receiving that reward (1/3 vs. 1.0).  FTT assumes that, for any decision, most adults mentally 

represent both the literal details (exact words or numbers) and multiple levels of gist of their 

options, but they rely more on the simplest gist.  In our example, the simplest gist is the 

categorical contrast between some money and no money, and so this decision boils down to 

receiving some money for sure versus taking a chance on receiving either some money or none.  

Thus, the categorical gist of this decision about “gains” or positive outcomes favors the sure 

option because some money is better than none (Reyna, 2012).  (This is only the first step in our 

argument; below, we explain why gist is necessary to predict choices.)  Note that, when this 

decision is represented in terms of categorical gist, the magnitude of reward does not offset the 

magnitude of risk (i.e., the decision is not a tradeoff).  
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The verbatim representation of this same gains decision contains representations of 

numbers, which support precise thinking.  Experiments have shown that children make decisions 

such as these by relying on verbatim representations of numbers, roughly “multiplying” 

probabilities and outcomes (i.e., 1.0 X $10 = $10 and 1/3 X $30 = $10), that is, by trading off 

risk and reward (Reyna & Brainerd, 1994; Schlottmann, 2001).  (Children are less able to 

process numbers accurately than adults although they rely on such literal details more; see 

below.)  As predicted by FTT, the tendency to rely on verbatim representations rather than gist 

declines with development from childhood to adulthood, producing increasing risk avoidance for 

decisions like these in which the simple gist favors the safe option.  Processing measures such as 

eye movements (e.g., Kwak et al., 2015) and meta-analyses of risky choice (e.g., Defoe, Dubas, 

Figner, & van Aken, 2015) confirm FTT’s prediction that development proceeds from a lesser to 

greater reliance on gist that supports risk avoidance for gains.   

Many decisions relevant to law and public health also have this structure, namely, a 

choice between a less rewarding but safe option and a tempting, more rewarding option with a 

small probability of an unsatisfying or negative outcome (Reyna & Farley, 2006).  FTT predicts 

that the more that decision makers rely on precise representations, trading off risk and reward, 

rather than categorical gist, the more likely they are to take such risks, which has been confirmed 

(e.g., Mills et al., 2008; Reyna, Estrada, DeMarinis, Myers, Stanisz, & Mills, 2011; Reyna & 

Farley, 2006; White et al., 2015).  This developmental trend for risk preference is distinct from 

the ability to choose mathematically advantageous options or to monitor cognition, both of which 

improve during the same period (Levin, Bossard, Gaeth, & Yan, 2014; Reyna & Brainerd, 1994; 

Weller, Levin, & Denburg, 2011). 
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Taken by itself, the evidence for gains might be interpreted as indicating that adults 

generally avoid risks.  However, research on gain-loss framing effects shows that this is not the 

case.  Suppose that a decision maker were given $30 but were asked to then choose between 

giving up $20 for sure versus a 2/3 chance to give up $30 and 1/3 chance to give up nothing.  

Here, most adults prefer the risky option for losses, the opposite of their preference for gains.  

This framing effect is a cognitive bias because the net outcomes are the same for gains and losses 

($30 -$20 = a net gain of $10 for sure and $30 – 2/3 X $30 = a net gain of $10).  The framing 

effect shows that most adults are not risk avoiding in the sense that they always dislike 

uncertainty or variance.  According to FTT, adults are risk seeking for losses because simple 

categorical gist translates the loss decision into a choice between losing some money for sure 

versus taking a chance on either losing some money or losing none.  Losing no money is better 

than losing some money, and so adults prefer the risky option.  In fact, differences between risk 

preferences for gains and losses generally increase developmentally, as predicted by FTT 

(Reyna, Chick, Corbin, & Hsia, 2014; Reyna & Ellis, 1994; Reyna et al., 2011).  The tendency to 

show framing effects has been used as an index of gist thinking that predicts behavior in different 

tasks (e.g., gist-based false memories), and is used here for that purpose (Corbin, Reyna, 

Weldon, & Brainerd, 2015). 

Manipulating Mental Representations: Why Gist is Necessary  

The cognitive representational explanation of gain-loss framing in terms of gist has been 

tested by deleting parts of the risky option to emphasize either quantitative tradeoffs (e.g., $10 

vs. 1/3 chance to receive $30) or qualitative categorical distinctions (e.g., $10 vs. 2/3 chance to 

receive $0):  Focusing on tradeoffs eliminates gain-loss framing effects, despite the fact that the 

deleted portion of the gamble is equal to zero (2/3 X $0 = $0) and should therefore make no 
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difference according to traditional theories (Kühberger & Tanner, 2010; Reyna et al., 2014). This 

deletion of “nothing” makes older subjects look like younger ones under standard conditions 

(without any deletion; i.e., under conditions when both parts of the risky option are present).   

In contrast, focusing on the qualitative distinction between something for sure and a 

probability of nothing augments framing effects, as predicted by FTT.  The latter deletion makes 

younger subjects look like older subjects under standard conditions.  In these experiments, full 

information about deleted parts of the risky option is provided prior to choice, so there is little to 

no ambiguity; those who pass ambiguity tests nevertheless exhibit the effects of deletion (Chick, 

Reyna, & Corbin, 2015).  Thus, these deletion manipulations can produce variation in the degree 

to which decision makers rely on gist versus verbatim processing, as evidenced by their pattern 

of choices. 

For example, it is not the case that gist is necessary to explain choosing a sure $10 rather 

than a 1/3 chance of $30.  In fact, FTT predicts that people do not prefer the sure $10 rather than 

a 1/3 chance of $30 when the zero complement is missing (i.e., when 2/3 chance of $0 is 

deleted).  This critical test was introduced to test predictions of FTT versus prospect theory 

(Kühberger & Tanner, 2010; for a review, see Reyna, 2012).  Prospect theory (and other theories 

of framing effects) predict that people choose the sure gain of $10 and choose the risky option 

for corresponding losses.  Prospect theory has two ways to predict such gain-loss framing 

effects: the value function and the probability function (Tversky & Kahneman, 1986).  Both 

functions are fully represented in the zero-complement-truncated condition (i.e., the Verbatim 

condition in Figure 1).  Yet, according to FTT, the predicted preference for the sure gain should 

not be observed when the zero complement is truncated (deleted).  Similarly, according to FTT, 

there should be no preference for the risky option in the loss frame when the zero complement is 
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truncated (deleted).  Thus, people are predicted to be indifferent between a sure loss and a risky 

option in the Verbatim condition.  (These examples assume that options are equal in expected 

value.)  In other words, although all of the factors that prospect theory predicts should matter are 

present, FTT suggests that the framing effect should not be observed, ruling out prospect theory.   

We have discussed only two results (one result for gains and one result for losses) out of 

six effects illustrated in Figure 1.  FTT predicts all six effects.  According to FTT, the Verbatim 

condition emphasizes trading off outcome and probability, which is contrasted with emphasizing 

categorical distinctions in the Gist condition (when the non-zero complement of the gamble is 

deleted).  Both verbatim and gist processing should contribute to choices in the traditional mixed 

condition (i.e., both gamble complements are present), which is then predicted to be intermediate 

in its framing effect.  Thus, gist is hypothesized to be necessary to explain framing effects 

because when that simple categorical distinction is not there, the framing effect should not be 

there either.   

Reversing Framing Effects 

Although adults typically choose risky losses and sure gains under standard conditions, a 

pattern of choices that is observed in children and adolescents, but rarely observed in adults, is 

called “reverse framing” or framing-inconsistent choice: choosing the sure loss and the risky 

gain (Levin, Gaeth, Schreiber, & Lauriola, 2002; Reyna & Ellis, 1994; Reyna et al., 2011).  

Framing-inconsistent choices are more evident when differences between outcomes are large, 

which makes sense theoretically because such decision makers rely on representations that 

emphasize precise differences rather than categorical gist that glosses over precise differences 

(emphasizing instead some-or-none qualitative distinctions).  Focusing on differences in 

outcomes (e.g., in magnitudes of rewards) should elicit reward-related approach to risky options 
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(Galvan, Hare, Voss, Glover, & Casey, 2007; Shulman et al., 2016).  However, cognitive 

representation has a unique effect on risk-taking controlling for reward sensitivity.  Hence, the 

effects of both reward sensitivity and cognitive representation seem to be synergistic in 

promoting risk-taking (Levin & Hart, 2003; Reyna et al., 2011).   

As predicted, the degree to which risky decisions in framing problems deviate from 

standard adult biases—toward framing-inconsistent choices—the higher the extent of self-

reported risk-taking in adolescents (e.g., Reyna et al., 2011).  Conversely, inducing categorical 

some-none thinking about the gist of risks (e.g., of HIV or pregnancy from unprotected sex) was 

found to reduce adolescents’ self-reported risk-taking in a randomized experiment with a one-

year follow-up (Reyna & Mills, 2014).  We present framing decisions in the deletion and 

standard conditions in the current study, which should produce a variety of choices for 

behavioral and brain analyses.  Extending developmental predictions of FTT, some of these 

patterns of choices are compatible with immature response tendencies of risk takers (sure choices 

for losses and risky choices for gains) and others are incompatible (sure choices for gains and 

risky choices for losses).  Thus, behavioral risk-taking is expected to correlate with framing-

inconsistent choices (i.e., reverse framing) and overriding these response tendencies to make 

framing-consistent choices may require cognitive effort.  

Neural Substrates of Risk Taking and Crime 

Prior research identifies several brain circuits that would be expected to covary with 

criminal and noncriminal risk-taking.  Neurodevelopmental theories of risk-taking implicate 

subcortical circuitry, especially amygdala and striatum, in either valence-specific processes 

(amygdala as negative, striatum as positive; Ernst et al., 2005) or as promoting cue-triggered 

motivated behavior regardless of positive or negative valence (Casey et al., 2016).  
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Developmental differences in engagement of these emotional and motivational systems may 

underlie the peak in risk-taking in adolescence and young adulthood (e.g., Galvan et al., 2007).  

Our developmental immaturity approach to adult risk-taking suggests that similar systems may 

be activated in criminal decision-making.  Consistent with this approach, studies have identified 

differences in the size and functioning of the amygdala among those engaged in criminal 

behavior (compared to those not engaged), along with lower sensitivity to fear, and, thus, 

presumably to negative consequences associated with crime (see Glenn & Raine, 2014).  

Similarly, resting-state connectivity analyses have shown greater connectivity between the 

amygdala (as a seed region) and the right middle frontal gyrus, left cingulate gyrus, left 

precuneus and right inferior parietal lobule in risk-taking adolescents than in non-risk-taking 

adolescents (Dewitt, Aslan, & Filbey, 2014). 

In opposition to such emotional and motivational systems, cortical circuits, especially 

medial and lateral prefrontal cortex (mPFC and lPFC) and the anterior cingulate cortex (ACC), 

have been associated with emotional regulation and self-control, and would be expected to be 

less engaged in criminal risk takers.  Consistent with this view, in one study, prisoners with 

lower ACC activity during an inhibitory-control task were twice as likely to reoffend four years 

after they left prison, as compared with prisoners with higher ACC activity (Aharoni et al., 

2013).   

Also, an area that is not central to neurodevelopmental or dual/triadic models of risk-

taking, the parietal cortex (including precuneus), has long been associated with decision-making 

and shown to predict risk preferences (Clithero & Rangel, 2013; Gilaie-Dotan et al., 2014; 

Huettel, Stowe, Gordon, Warner, & Platt, 2006; Louie & Glimcher, 2010; Platt & Glimcher, 

1999; Sugrue, Corrado, & Newsome, 2004).  Another such area, the insula, is predominantly 
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active in the presence of potential losses (Mohr, Biele, & Heerkeren, 2010) and when decision 

makers try to minimize losses in risky decisions (Venkatraman, Rosati, Taren, & Huettel, 2009).  

Thus, decision neuroscience research suggests that, in addition to the interplay of hot risk-

promoting and cold risk-inhibiting circuits, activation of parietal cortex (and for losses, insula) 

may reflect mental representations of risk used in decision-making.  

In drawing on neurodevelopmental theory and other prior research on risk-taking, it is 

important to distinguish psychological states, such as sensation-seeking, and the neural processes 

believed to underlie these states (e.g., striatal and orbitofrontal systems of reward sensitivity; 

Abler, Walter, Erk, Kammerer, & Spitzer, 2006; Leyton et al., 2002; Shulman et al., 2016).  

Neurobiological phenomena are expected to have psychological manifestations, some of which 

can be measured via self-reports and behavioral assessments.  Thus, as in prior work, we use 

self-reports of sensation-seeking as an overarching label for the inclination to pursue “varied, 

novel, complex, and intense sensations and experiences and the willingness to take physical, 

social, legal, and financial risks for the sake of such experiences” (Zuckerman, 1994, p. 26).  We 

also include measures of cognitive processes that have been predicted to inhibit unwarranted 

risk-taking and framing biases, such as objective numeracy (the ability to understand and use 

numbers) and cognitive reflection (the ability to reflect on and inhibit cognitive biases), both of 

which correlate with general intelligence (Frederick, 2005; Liberali, Reyna, Furlan, Stein, & 

Pardo, 2012; Peters et al., 2006).   

Summary 

In sum, reviews of real-world risk taking and of laboratory studies indicate that some risk 

takers trade off risks and rewards, applying thinking that is characteristic of younger people.  

That is, they make finer distinctions among magnitudes of risk and reward, and are more willing 
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to take risks when they offer the potential for larger gains.  In contrast, adults who are typically 

risk-avoidant for gains tend to make simpler gist distinctions, for example, between gaining 

something versus nothing.  These verbatim-versus-gist thinking tendencies can be assessed using 

risky-choice tasks, which predict real-world risk-taking and produce robust effects in incentive-

compatible study designs (when real money is at stake; e.g., Galvan et al., 2007; Lejuez, Aklin, 

Zvolensky, & Pedulla, 2003; Reyna & Ellis, 1994).  Therefore, in the current study, we expect 

that self-reported risk-taking in adults should be related to immature risk preferences called 

“reverse framing” that reflect cognitive representations of risky decisions.  Moreover, we 

distinguish between criminal and noncriminal risk-taking to test neurodevelopmental hypotheses 

about reactive mechanisms in subcortical circuits involving the amygdala and striatum as well as 

cognitive representational mechanisms in prefrontal and parietal cortices. 

Specifically, we investigate the following hypotheses: 

1. Self-reported risky behavior should be associated with sensation seeking and, thus, with 

neural substrates of “hot” cognition, such as emotional reactivity and reward sensitivity; 

2. Self-reported risky behavior should also reflect “cold” cognition and, thus, the neural 

substrates of risk preferences arrived at through a greater emphasis on verbatim rather than 

gist processing.  Consequently, neural activation should covary with criminal behavior when 

subjects make framing-inconsistent choices because such choices are associated with 

verbatim processing, and therefore more unhealthy risk-taking regarding crime;  

3. When activation is greater for those with greater levels of criminal behavior in traditional 

framing-consistent contrasts, this activation may be in areas of the brain involved in 

cognitive control and inhibition. This is because individuals with a tendency to rely on 

verbatim processing need to exert cognitive control to go against their natural tendency and 
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choose options consistent with bottom-line gist-based processing (i.e., framing-consistent 

decisions). 

Materials and Methods 

Subjects 

Subjects were thirty-two healthy, right-handed adults recruited from the Columbia 

University campus and surrounding region (New York, NY). Subjects ranged in age from 18-35 

(M = 22.88, SD = 4.74) and 56.3% were female. Subjects self-identified as Caucasian (46.9%), 

African American (12.5%) and Hispanic (12.5%). Subjects were screened to exclude left 

handedness, psychiatric disorder, current use of psychoactive medications, head trauma with loss 

of consciousness, learning disability, current serious medical problems, premature birth, current 

pregnancy, or serious physical handicap preventing completion of study tasks. Safety exclusions 

included history of surgery involving metal implants, possible metal fragments in the eyes, 

braces, pacemaker, pregnancy, a history of claustrophobia, or weight over 220 lbs. Age was 

restricted to between 12 and 45 years; the upper age limit guarded against cognitive decline 

(Brainerd, Reyna, & Howe, 2009). The study was conducted with the approval of the 

Institutional Review Boards at both Cornell and Columbia universities. All subjects provided 

informed consent and were compensated with a fixed payment. One subject did not complete 

behavioral survey questions (e.g., on criminal behaviors).  

Procedure 

After providing informed consent, subjects received disambiguation instructions and 

examples to ensure that they did not make assumptions that might alter the numerical value of 

truncated risky options (see Chick, Reyna, & Corbin, 2015). Additional instructions and 

examples were provided if subjects misunderstood instructions. A questionnaire ensured 
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comprehension of these disambiguation instructions. Subjects then completed a set of 60 risky-

choice framing problems in an fMRI scanner, and then answered survey questions and other 

behavioral assessments outside of the scanner (e.g., on sensation seeking and risk-taking).  A 

second ambiguity check followed the framing task. 

Materials 

Risky-choice framing problems. Risky-choice framing problems were modeled after the 

Asian Disease Problem: “Imagine the U.S. is preparing for the outbreak of an unusual Asian 

disease, which is expected to kill 600 people. Indicate the option you prefer: a) 200 people saved 

for sure, or b) 1/3 probability 600 saved, 1/3 probability none saved.” (Tversky & Kahneman, 

1986). The framing problems followed a 2x2x3x5 within-subjects design with frame (gain, loss), 

content (lives and other valued outcomes or money), truncation (verbatim such that thezero part 

of the risky option was deleted; standard such that both parts of the risky option are present; and 

gist such that thenonzero part of the risky option was deleted) and replication (five different 

problems all with the same structure) as factors. For each choice problem, subjects were 

presented with a preamble in which such outcomes as lives or money were at stake, and asked to 

make a decision between a sure and risky choice of equal expected value.  

Truncation. Keeping the sure option constant, the risky option was manipulated to 

present only the zero complement in the gist-emphasis condition (e.g. 1/3 probability none 

saved), only the nonzero complement in the verbatim-emphasis condition (e.g., 1/3 probability 

600 saved), or both complements in the mixed condition (e.g., 1/3 probability 600 saved, 1/3 

probability none saved) in which both gist and verbatim processes are emphasized. The zero 

complement is the outcome in which no one is saved or nothing is won (in the gain frame) or no 

one dies or nothing is lost (in the loss frame).  
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Problem sets. A total of 120 framing problems were divided into two sets of 60 problem. 

The gain and loss framed versions of each problem appeared in different stimulus sets, so that no 

subject received both the gain and loss versions of the same problem. Problems were presented 

in a pseudorandom order, such that the same problem could not appear twice in a row. Problems 

were presented in two pseudorandomized and counterbalanced runs of 11 minutes and 20 

seconds each. 

 Trial sequence. The timing of scenarios and decision screens was based on repeated 

piloting and feedback from subjects to ensure that subjects were able to read the scenarios and 

respond within the allotted time. During imaging, all problems were presented in an event-

related design. Each trial included presentation of a fixation cross (4.5 s), followed by the 

problem preamble (7 s), the presentation of the sure and the gamble option (up to 8 s, during 

which subjects entered their selection via button press), and a confidence rating for their choice 

(“How confident are you in your decision?” with response from 1 [not at all] to 5 [completely], 

up to 3 s). The decision phase (sure vs. gamble option) lasted only until a response was entered, 

at which point the next screen (confidence rating) appeared. This usually took less than the 

allotted 8 s. Similarly, the confidence phase lasted only until the subject entered a rating, at 

which point the next trial began. The other phases (fixation cross and problem preamble) did not 

vary in duration. Stimuli were delivered using the Presentation software (Neurobehavioral 

Systems Inc., Albany, CA, 2010; www.neurobs.com). Subjects viewed the stimuli via a projector 

and a mirror attached to their head coil, and they indicated their responses using a five-button 

MRI-compatible keypad operated with their right hand.  

Image acquisition. Imaging was conducted using a 1.5 Tesla General Electric Signa 

MRI scanner (GE Healthcare, Waukesha, Wisconsin) equipped with an 8-channel head coil 
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(High-Resolution Head Coil, Rev. 4; Invivo, Gainesville, FL). Whole-brain blood oxygen-

dependent (BOLD) functional images were acquired using a T2*-weighted, bottom-up, 

interleaved sequence. The parameters were as follows: repetition time (TR) = 2000 ms; echo 

time (TE) = 35 ms; flip angle = 84 degrees; field of view (FOV) = 22.4 cm; matrix size = 64 x 

64. There were 340 volumes acquired during each of our two runs, each volume contained 27 

slices and had a slice thickness of 4 mm (gap=0 mm) and an in-plane resolution of 3.5 × 3.5 mm. 

Structural images were acquired with a T1-weighted spoiled gradient recalled (SPGR) sequence 

(TR = 19 ms, TE = 5 ms, flip angle = 20, FOV = 25.6 cm) recording 180 slices with a slice 

thickness of 1 mm and an in-plane resolution of 1x1 mm.  

Questions about engagement in risk taking. After imaging, subjects answered 

questions from a risk questionnaire used with adolescents and adults, including questions about 

their engagement in criminal and noncriminal behaviors (Berns, Moore, & Capra, 2009; Gullone, 

Moore, Moss, & Boyd, 2000). Subjects were asked how often they had engaged in the following 

behaviors: smoking, roller blading, parachuting, speeding, tae kwon do fighting, staying out late, 

talking to strangers, flying in a plane, cheating, getting drunk, sniffing gas or glue, having 

unprotected sex, leaving school, teasing and picking on people (relational aggression), snow 

skiing, overeating, and entering a competition (all noncriminal), and drinking and driving, 

stealing cars and going for joy rides, underage drinking, driving without a license, and taking 

drugs (all criminal). Subjects answered on a four-point scale from “never done” to “done very 

often.” This resulted in an overall scale from 0 to 88, with 0 representing never having engaged 

in any of the behaviors, and 88 representing having engaged in all of the behaviors very often (α 

= .572), a criminal risk-taking scale with scores from 0 to 20 (α = .393), and a noncriminal risk-

taking scale with scores from 0 to 68 (α = .439).  
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Hence, noncriminal risky behavior included substance use that is not criminal (e.g., 

getting drunk, sniffing gas or glue), relational aggression, and other risky but not criminal 

behaviors (e.g., unprotected sex).  Criminal risky behavior included substance use that crossed 

the line into criminal behavior (e.g., drinking and driving, taking illegal drugs), aggression 

against others (e.g., theft), and other risky criminal behaviors.  Therefore, there was some 

overlap in categories across noncriminal versus criminal behavior, such as substance use; items 

of both types ranged in severity although, naturally, the criminal behaviors were more extreme.  

One author is a licensed attorney who verified the noncriminal versus criminal status of each 

behavior.   

Subjects also answered other questions (some to be published elsewhere), including those 

to assess objective numeracy (the Lipkus Peters Objective Numeracy Scale; Peters, Dieckmann, 

Dixon, Hibbard, & Mertz, 2007), sensation seeking (the Sensation Seeking Scale; Zuckerman, 

1994), reflection (the Cognitive Reflection Test [CRT]; Frederick, 2005), and alcohol use (the 

World Health Organization Alcohol Use Disorders Identification Test [AUDIT]).   

Behavioral Data Analysis 

Choice. Subjects selected between two options (sure or risky) on each decision problem. 

Initial analyses focused on choices that subjects made (sure or risky for each problem) as they 

varied across truncation (verbatim, mixed, gist) and frame (gain, loss); lives versus money and 

replications did not differ significantly across truncation or frame and responses were summed 

across these factors.  

Framing index. A framing index was calculated as the average number of risky choices 

in the loss frame minus the average number of risky choices in the gain frame.  The index ranged 

from all framing-consistent choices to all framing-inconsistent choices. Thus, a positive framing 
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index indicates a standard framing effect and a negative framing index indicates a reverse 

framing effect.  

fMRI Data Analysis 

Preprocessing. Each subject’s anatomical images were skull stripped in AFNI using 

3DSkullStrip (Cox, 1996), and functional images were masked using 3DAutomask. Subsequent 

preprocessing was completed using SPM8 (Wellcome Department of Imaging Neuroscience, 

London, UK, 2009; www.fil.ion.ucl.ac.uk/spm) implemented in MATLAB R2012b 

(MathWorks, Natick, Massachusetts, USA: Ged Ridgway, 

http://www.cs.ucl.ac.uk/staff/g.ridgway/vbm/get_totals.m). The first four acquisitions were 

discarded to allow for T1-equilibration effects. Preprocessing in SPM8 began with slice-timing 

correction to adjust for differences in timing of the interleaved slice acquisition. Images were 

then realigned to correct for head movement. Four subjects were eliminated for excessive motion 

in any direction; thus, no subject exceeded 2.5mm head motion. Realigned images were then 

coregistered and normalized to the EPI Montreal Neurological Institute (MNI) template. 

Smoothing was applied to the normalized images with an 8mm full-width half-maximum 

(FWHM) Gaussian kernel. Images were also individually screened for scan stability (< 2.5mm 

head movement) and imaging artifacts to ensure data quality.   

Covariate analysis. Voxelwise whole-brain covariate analyses were conducted with our 

previously defined set of a priori contrasts in order to test modulation of BOLD signal by 

differences in self-reported criminal and noncriminal risky behavior. The framing contrast 

(Framing>Reverse Framing) was defined as (collapsing across the three truncation 

manipulations) activation when choosing the sure option in the gain frame plus activation when 

choosing the risky option in the loss frame minus activation when making the opposite choices: 
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(GainSure + LossRisky) - (LossSure + GainRisky). The opposite framing-inconsistent contrast 

(Reverse Framing>Framing) was also examined, again collapsing across the three truncation 

manipulations. We also analyzed the three truncation conditions separately and combined each 

of the two truncation conditions with the mixed (nothing deleted) condition, for example, 

(GistGainSure + Mixed GainSure + GistLossRisky + MixedLossRisky) – (GistLossSure + 

MixedLossSure + GistGainRisky + MixedGainRisky).  Finally, we analyzed gain and loss 

choices separately that were either framing-consistent (e.g., LossRisky - LossSure, and GainSure 

- GainRisky) or framing-inconsistent (e.g., LossSure – LossRisky, and GainRisky – GainSure). 

Cluster detection threshold was set at p <.001.  Cluster-level results were examined at a 

Family Wise Error (FWE)-corrected threshold of p< .05 to account for multiple comparisons. 

Results significant for both peaks and clusters are designated by bolding in the tables. All 

coordinates are reported in MNI space.  

Results 

Behavioral Results 

 ANOVA. We first conducted a repeated-measures ANOVA to examine the effects of 

each of our manipulations (frame and truncation) on decisions in the risky-choice framing task. 

This analysis yielded a main effect of frame, F(1,31) = 52.7, p <.001, ηp
2 = .629 , such that 

subjects picked the risky option more in the loss frame and the sure option more in the gain 

frame (choosing the risky option 32% of the time in the gain frame, and 61% of the time in the 

loss frame).  The analysis also revealed an interaction between frame and truncation, F(2,30) = 

18.4, p <.001, ηp
2 =.550 (Figure 1).  Pairwise comparisons show a significant framing effect in 

the gist condition (p <.001, d = 2.28) and mixed condition (p <.001, d = .996), but no significant 
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framing effect in the verbatim condition (p = .408, d = .192). The largest framing effect was in 

the gist condition.  

Subjects were generally confident about their choices, averaging 3.76 on a 1-5 scale, and 

were slightly more confident in the gist (nonzero-deleted) than verbatim (zero-deleted) 

conditions; mixed was in the middle.  Signed confidence ANOVAs and correlations were also 

conducted in which confidence ratings were multiplied by 1 if a subject chose the risky option, 

but by -1 if they chose the sure option.  Similar factors were significant in the signed-confidence 

and choice analyses, indicating that choices did not reflect mere guessing (a confidence rating of 

1).  Because results are similar for choice and signed confidence, only choice results are reported 

in detail below.    

Criminal and noncriminal risky behavior. Total observed scores on the self-reported 

risky behavior scale ranged from 37 to 64, M = 49.74, SD = 6.22. The criminal risky behavior 

scale ranged from 5 to 14, M = 9.03, SD = 2.30. The noncriminal risky behavior scale ranged 

from 32 to 50, M = 40.71, SD = 4.87. The sensation seeking scale ranged from 4 to 19, M = 

10.48, SD = 3.73. The objective numeracy scale ranged from 0 to 9 correct, M = 7.97, SD = 1.82.  

The CRT ranged from 0 to 3 correct, M = 1.45, SD = 1.09. The AUDIT ranged from 0 to 14, M = 

6.65, SD = 3.78.   

To test hypotheses about adult risk-taking, we correlated the number of gain and loss 

risky choices as well as the overall framing index with total self-reported risk-taking.  Although 

the correlation of total risk-taking with risky choices for gains was positive and for losses was 

negative, only the framing index (losses – gains) was significant (r = -.376, p = .044).  That is, 

the greater the extent of reverse framing, the more frequently subjects engaged in risky behaviors 

overall.   
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The pattern of correlations with gain, loss, and framing scores was similar for the AUDIT 

scale but did not reach significance (e.g., framing index, r = -.296, p = .106).  Like risky 

behaviors, sensation seeking correlated negatively with the framing index (r = -.488, p=.005), but 

it also correlated significantly with risky choices for gains (r = .417, p =.019).  Sensation 

seeking, total risky behavior, and AUDIT all correlated significantly with one another: sensation 

seeking-AUDIT was .384 (p = .033), sensation seeking-total risky behavior was .411 (p = .022), 

and total risky behavior-AUDIT was .673 (p <.001).  Thus, risky choices in the framing 

decisions correlated as predicted with self-reported real-world risk-taking. 

When we scored criminal and noncriminal risk-taking separately, noncriminal risk-taking 

missed significance for the framing index (r = -.333, p = .068) but was significant for the signed 

confidence framing index (r = -.377, p = .037) and it also correlated positively with sensation 

seeking (r = .423, p = .018) and with AUDIT (r = .560, p = .001).  Criminal risk-taking also 

correlated positively with AUDIT (r = .502, p =.004).  Criminal risk-taking did not correlate 

significantly with framing indexes or sensation seeking.   

Correlations with ONS and CRT were near zero for total risk-taking.  Correlations of 

criminal and noncriminal risk-taking separately with ONS and CRT were also each close to zero.   

Covariation of Neural Activation with Criminal and Noncriminal Risky Behavior 

We examined how activation (BOLD signal) in the brain for different types of decisions 

varied as a function of noncriminal and criminal risky behavior scores. The complete significant 

covariate results, including visual and motor areas, can be found in Tables 1S, 2S, and 3.  

Non-criminal risky-behavior scores.  All significant covariations with noncriminal 

risky-behavior scores were in framing-inconsistent contrasts (Table 1). One cluster, in the 

Verbatim + Mixed GainRisky > Verbatim + Mixed GainSure contrast, had a peak that also 
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survived family-wise error correction, meaning activation in both the cluster and peak itself had 

activation that significantly increased as noncriminal risky behavior increased. This cluster had a 

peak in the amygdala and also extended into the striatum (putamen) and hippocampus (Figure 2).  

Criminal risky-behavior scores.  

Framing-inconsistent contrasts. In our framing-inconsistent contrasts, we first looked 

for activations in our overall contrasts (contrasts that were not specific to the gist, mixed, or 

verbatim conditions): LossSure>LossRisky, GainRisky>GainSure, and Reverse 

Framing>Framing. None of these overall contrasts showed activations that increased as criminal 

behavior increased. We then looked at our more specific contrasts (including activations only in 

a specific truncation condition or a combination of mixed and each deletion), and found 

activation that significantly covaried with criminal behavior in multiple clusters across five 

contrasts (Verbatim Reverse Framing > Gist Framing, Mixed Reverse Framing > Gist Framing, 

Gist Reverse Framing > Gist Framing, Gist + Mixed LossSure > Gist + Mixed LossRisky, and 

Gist LossSure > Gist LossRisky) (Table 2).  Across four of our five contrasts, activations in 

parietal areas increased as criminal behavior increased.  In Gist LossSure > Gist LossRisky, 

activation in a cluster including the inferior parietal lobule (IPL), temporal gyri, and the insula 

increased as criminal behavior increased (Figure 3).  This cluster encompassed the anterior 

temporal parietal junction.  Both the cluster itself and the peak of this cluster (in the angular 

gyrus of the IPL) survived FWE correction.  

In the Gist + Mixed LossSure > Gist + Mixed LossRisky contrast, which subsumes the 

cluster above, activation in a cluster containing the IPL and insula increased as criminal behavior 

increased.  For this contrast, activation in the anterior cingulate cortex also increased as criminal 

behavior increased.  In two of our three Reverse Framing > Framing contrasts (Mixed Reverse 
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Framing > Gist Framing, and Gist Reverse Framing > Gist Framing), we observed clusters of 

activation in the right supramarginal gyrus and right angular gyrus of the IPL that increased as 

criminal behavior increased, extending into the temporal gyri.  

Framing-consistent contrasts.  Fewer clusters of activation increased as criminal 

behavior increased in framing-consistent contrasts (Table 3).  Again, we first looked for 

activations in our overall contrasts (LossRisky > LossSure, GainSure > GainSure, and Framing > 

Reverse Framing).  Activation in one of these contrasts covaried with criminal behavior: 

LossRisky > LossSure (Figure 2S).  In this contrast, activation in the pre-supplementary motor 

area (SMA) increased as criminal behavior increased.  In order to check whether this effect was 

driven by the fact that the contrast involved framing or the fact that the contrast involved 

choosing the risky option, we examined the corresponding framing-consistent contrast in the 

gain frame (GainSure > GainRisky) and the corresponding risky contrast in the gain frame 

(GainRisky > GainSure).  Neither of these contrasts showed significant activations that increased 

with criminal behavior when correcting for FWE. (When not correcting for FWE, activation in a 

cluster in the left pre-supplementary motor area, 38 voxels of activation with a peak at -4 20 48, 

increased as criminal behavior increased in the GainSure > GainRisky contrast.)  Activation in 

this area did not increase as criminal behavior increased in the GainRisky > GainSure contrast.  

We then examined more specific contrasts (including activations only in a specific 

truncation) and found covariation with criminal behavior in one of them (Table 3). This was the 

condition in which we encouraged verbatim thinking: Verbatim LossRisky > Verbatim 

LossSure.  In this contrast, two clusters of activation increased as criminal behavior increased – 

one cluster in the right dlPFC and one cluster in the left dlPFC (Figure 4).  In order to check 

whether this effect was driven by the fact that the contrast involved framing or the fact that the 
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contrast involved choosing the risky option in the verbatim frame, we examined the 

corresponding framing contrast in the gain frame (Verbatim GainSure > Verbatim GainRisky) 

and the corresponding risky contrast in the gain frame (Verbatim GainRisky > Verbatim 

GainSure).  In the Verbatim GainSure > Verbatim GainRisky contrast, when not correcting for 

FWE, activation in a cluster in the left dlPFC (79 voxels of activation with a peak at -16 42 30) 

increased as criminal behavior increased.  There was no increase in the risky contrast. 

Discussion 

Criminal behavior involves inherent risk, notably, the risk of legal sanctions.  Typically, 

those who engage in crime are aware of these sanctions, but pursue rewards, such as “joy” riding 

(stealing cars) or the highs of substance use despite the potential penalties.  Noncriminal 

behavior--smoking, drunkenness, and unprotected sex—can also incur risks.  Two routes to risk-

taking have been identified in prior work with adolescents: a “hot” route that involves emotional 

reactivity and reward sensitivity and a “cold” reasoned route that involves trading off magnitudes 

of risk and reward (Reyna & Farley, 2006).  The current study provides evidence for distinct 

neural and behavioral substrates for both types of risk-taking in adults.   

Noncriminal risk-taking correlated with sensation seeking and substance use (using an 

established measure of alcohol dependence), and covaried with activation in emotion and reward 

areas of the brain.  Criminal risk-taking correlated to a similar degree with substance use, but 

covaried with activation in risk preference areas of the brain that also support magnitude 

comparisons (i.e., the inferior parietal cortex, including the supramarginal and angular gyri; 

Huettel et al., 2006), as well as with the right temporal parietal junction (rTPJ) that has been 

associated with moral and social cognition (both anterior and posterior rTPJ were activated as 

indicated in Table 2; Krall et al., 2015).  Noncriminal risk-taking was not entirely hot, even 
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though it covaried with activation in emotion and reward areas, to the extent that behavioral 

choices (see below) and activation of superior and inferior parietal cortices can be taken to imply 

a cognitive evaluation of risk and reward (Table 1; see Reyna et al., 2011).  Criminal risk-taking 

was apparently not entirely cold either; activation of the insula was correlated with criminal 

behavior when the sure loss was chosen, consistent with experiencing loss aversion (e.g., 

DeMartino, Harrison, Knafo, Bird, & Dolan, 2008).  Thus, higher risk-taking was associated 

with choosing the sure loss, perhaps despite experiencing some negative affect when doing so 

(but reverse inferences from brain to behavior should be made with caution; Poldrack, 2006). 

For criminal risk-taking, we also observed activation of areas related to anti-social 

behavior in prior work, such as the superior temporal gyrus, angular gyrus, insula (Table 2) and 

dlPFC (Table 3; see Glenn & Raine, 2014, for an overview).  The amygdala/hippocampus, also 

previously associated with anti-social behavior, was activated in noncriminal risk-taking that 

included anti-social behavior, such as relational aggression (i.e., teasing and picking on people).  

Taken as a whole, our results suggest that the broader category of anti-social behaviors, which 

encompasses criminal and non-criminal risk-taking, may result from different kinds of 

developmental delays in emotionally reactive and cognitive representational systems. 

For both types of risk-taking, behavior correlated negatively with the framing index, 

indicating that higher levels of risky behavior were related to risky choices that reflected a 

reverse-framing pattern rarely observed in non-disordered adults.  The predominant and most 

reliable brain results also were obtained when subjects chose in accordance with reverse framing: 

choosing risky gains (Table 1) or sure losses (Table 2).  Criminal and noncriminal risk-taking did 

not vary with proxy measures for general intelligence or inhibition in this sample.  According to 

fuzzy-trace theory, reverse-framing choices not only reflect the pull of rewards (in choosing the 
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risky gains option with larger rewards), but also a way of thinking about risk and reward that 

makes the sure loss more attractive than the risky loss because it is smaller.  This focus on 

precise, quantitative comparisons between options (modulated by both outcomes and 

probabilities, as demonstrated in prior work) stands in stark contrast to the simple qualitative 

comparisons that mature adults make between gaining or losing something versus nothing.   

The kind of verbatim processing that emphasizes literal and precise details is eschewed 

by most mature adults when decisions have potentially life-altering consequences.  

Developmentally advanced adults typically rely more on gist, such as simple but meaningful 

categorical contrasts between options, and thereby avoid low-probability but potentially 

catastrophic consequences.  In this sense, gist thinking is thought to have a protective effect in 

that it reduces unhealthy or negative outcomes.  The relative reliance on verbatim versus gist 

thinking in risky decision-making can be assessed using traditional framing tasks that pit sure 

options against risky ones because they reveal a cognitive bias to process gist that deviates from 

rational, objective thinking.  For most people, this bias grows from childhood to adulthood, so 

that their decision processes become progressively more technically irrational but globally 

adaptive.    

Representations of Risk: Behavioral Results 

Although many of the results we have discussed are correlational (with the limitations of 

such designs), it is useful to note that we provided an experimental test of our processing 

explanations, demonstrating effects in this sample, and these experimental manipulations of 

frame and truncation (Figure 1) were incorporated in our behavioral and brain analyses. 

Theoretically motivated manipulations of gist and verbatim processing were successful in 

making traditional framing effects grow and shrink, respectively, collectively producing a wide 
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range of variability in risky choices.  These results buttress FTT’s explanation that risk 

preferences have to do, in part, with thinking that emphasizes tradeoffs between risk and reward 

as opposed to simple gist categories, such as gaining something rather than nothing (Kühberger 

& Tanner, 2010).  The manipulations induce ways of thinking that have been shown to be related 

to real-world risk taking in domains other than criminal risk-taking (Blalock & Reyna, 2016; 

Broniatowski, Klein, & Reyna, 2015; Fraenkel et al., 2012, 2015; Reyna & Mills, 2014; Reyna et 

al., 2015; Wolfe et al., 2015).   

With respect to criminal risk-taking, reliance on gist representations should have a 

protective effect in reducing criminal behavior when risks are low and benefits are high, as they 

often are (e.g., the risk of arrest from a single instance of drunk driving; Matsueda, 2013).  

Individuals relying on gist tend to engage in categorical thinking, such as it only takes once to 

get caught.  In contrast, verbatim thinking promotes risk-taking because benefits offset risks.  

Although both verbatim and gist representations of decision options are typically encoded so that 

gist thinkers process the low risks and high rewards, mature adults nevertheless rely more on the 

simple bottom line.   

Here, we have argued that adult risk-takers, including those whose risk-taking ventures 

into crimes, exhibit an immature verbatim way of thinking exemplified in laboratory tasks as 

reverse framing—preferring sure losses and risky gains—because of greater emphasis on surface 

details, such as quantitative differences in potential outcomes.  As predicted, we observed 

significant correlations between this pattern of behavioral choices in the laboratory and self-

reported risky behavior.  Also as expected, greater sensation seeking (i.e., reward sensitivity) was 

related to risking seeking for gains because the risky option offered larger rewards, replicating 

prior research (Reyna et al., 2011).  However, behavioral and brain covariation results cannot be 
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explained solely by reference to reward sensitivity:  Overall risk-taking was not associated with 

either risk seeking for gains nor risk avoidance for losses by themselves and preferences for sure 

losses are not explained by reward sensitivity (Ernst et al., 2005).    

Neural Activation Covaries with Self-reported Criminal Risk-taking 

 Our analyses revealed a greater number of significant results when examining the 

relationship between criminal behavior and neural activation in reverse-framing contrasts (than 

in framing-consistent contrasts), broadly supporting the prediction that verbatim cognitive 

processes are related to unhealthy risk-taking, such as crime.  

 Consistent with the behavioral results, noncriminal risk-taking was most reliably related 

to choices of the risky option in the gain frame (the option with the larger reward), covarying 

with areas previously associated with emotional reactivity (e.g., the amygdala) and reward 

sensitivity (e.g., striatal areas including putamen and caudate).  This result is consistent with 

neurodevelopmental and dual/triadic systems approaches, suggesting that adult risk takers react 

much like adolescents when making risky choices for rewards (Casey et al., 2016; Shulman et 

al., 2016).  Criminal risk-taking in our sample did not reliably covary with activation in the 

amygdala and striatum.  Because our subjects were community dwelling rather than incarcerated, 

the latter result could be interpreted as supporting the argument that “successful” (not 

incarcerated) psychopaths are less likely to be impulsive reactive risk-takers, unlike unsuccessful 

ones (Gao & Raine, 2010).    

As the frequency of self-reported criminal behavior increased, activation increased in 

areas normally associated with risk preferences, such as the parietal cortex, when subjects chose 

the sure loss (Gilaie-Dotan et al., 2014; Huettel et al., 2006).  However, this activation was not 

especially posterior.  Interestingly, activation extended to areas identified in moral cognition and 



Criminal Risk Taking in the Brain   29	

psychopathy, including the angular gyrus, superior temporal gyrus, and right temporal-parietal 

junction (Glenn & Raine, 2014; Harenski, Harenski, Shane, & Kiehl, 2010; Krall et al., 2015).  

Preferring sure losses may suggest less susceptibility to loss aversion or negative outcomes, 

consistent with prior research on criminality (again, despite some insula activation; Glenn & 

Raine, 2014; Pujara et al., 2013).   

In sum, significant covariation in the brain was observed with risk-taking when choices 

were the reverse of traditional framing biases, consistent with cognitive representational as well 

as motivational mechanisms in brain and behavior.  These results are unlikely to be due to 

differences in numeracy, intelligence, or cognitive reflection because such measures were not 

related to criminal or noncriminal risk-taking in this sample.  However, reverse-framing contrasts 

were associated with increased activation in parietal areas of the brain (specifically the inferior 

parietal lobule, the supramarginal gyrus, and the angular gyrus).  Previous research has 

associated parietal areas with number processing and numerical calculation (Dehaene, Piazza, 

Pinel, & Cohen, 2003; Kaufman, Wood, Rubinsten, & Henik, 2011; Kucian, von Aster, 

Loenneker, Dietrich, & Martin, 2008) and bilateral parietal activation during magnitude 

comparison (Chochon, Cohen, Van De Moortele, & Dehaene, 1999; Pinel, Dehaene, Riviere, & 

LeBihan, 2001; Pinel et al., 1999), which is consistent with verbatim processes of magnitude 

comparison and trading off of quantities of risk and reward.  

Covariation in Framing-Consistent Contrasts 

Although less reliable, there was some suggestion that criminal risk-taking was 

associated with suppressing preferred response tendencies (i.e., reverse framing) when choosing 

options that were instead consistent with traditional framing effects.  That is, when making 

framing-consistent decisions, higher levels of criminal behavior were associated with increased 



Criminal Risk Taking in the Brain   30	

bilateral activation in the dlPFC in the Verbatim Loss Risk > Verbatim Loss Sure condition (a 

condition in which trading off was encouraged), and greater activation in the pre-SMA in the 

Loss Risk > Loss Sure condition. The dlPFC (Casey et al., 2016; Reyna & Huettel, 2014; 

Shulman et al., 2016) and the pre-SMA have been associated with inhibition and cognitive 

control (Barber, Caffo, Pekar, & Mostofsky, 2013; Mayka, Corcos, Leurgans, & Vailliancourt, 

2006; Simmonds, Pekar, & Mostofsky, 2008; Swann et al., 2012).  For example, dlPFC activity 

has been correlated with successful self-control (e.g. in go/no-go tasks; Casey et al., 2011; or 

when choosing between healthy and unhealthy goods; Hare, Camerer, & Rangel, 2009) and 

research suggests that increasing dlPFC activation reflects increased engagement of self-control 

(MacDonald, Cohen, Stenger, & Carter, 2000; Schonberg et al., 2012). This dlPFC activation 

increased with criminal behavior in the verbatim condition, which discourages framing, and 

where we could expect it to be especially difficult for those with higher levels of criminal 

behavior to frame.  In other words, these are individuals who are not predisposed to frame in 

addition to being encouraged not to frame based on the verbatim truncation of the risky option. 

Thus, individuals who have a history of more criminal behavior may require greater cognitive 

control to engage in framing-consistent decisions associated with a healthy attitude to risk in 

prior studies.   

Policy Implications 

Some interventions to reduce crime have aimed at encouraging high-risk individuals to 

think “slowly” (see Heller et al., 2015). This approach is justified by neurodevelopmental theory, 

in which crime (especially adolescent crime) reflects an imbalance between “hot” motivational 

affective systems and “cold” deliberation and inhibition (Somerville & Casey, 2010; Steinberg, 

2008).  Our research suggests that mental representation (gist or verbatim) could also play an 
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important role in decisions to commit crime. Thus, while it is important to encourage inhibition, 

it may also be important to encourage reliance on qualitative gist representations in order to 

reduce the need for inhibition and, consequently, unwarranted risk-taking. This new approach 

has previously been applied effectively to reduce other kinds of unhealthy risk taking (e.g., for a 

review, see Blalock & Reyna, 2016).  Cueing and practicing gist processing may help immature 

adults think about risky choices like neurotypical adults do—as simple decisions about what 

matters.  

Context of Research 

Most theories assume that cognitive biases, such as framing, are due to irrational decision 

processes.  Developmental and individual differences are expected to reflect these processes: 

Younger people and adults who make poor decisions should therefore exhibit more biases.  

However, FTT predicts the opposite under specific circumstances, and research has borne this 

out:  Children are less biased than adults, adolescents who take unhealthy risks are less biased 

than those who do not, and novices are less biased than experts in their domain of expertise.  We 

wondered whether adults who make immature risky decisions and engage in criminal behavior 

would show a similar, developmentally delayed pattern of cognitive biases, which they did.   At 

the level of brain and behavior, we hypothesized that risky behavior springs from cognitive 

differences in verbatim versus gist thinking about risk (reflected in a reversal of typical framing 

biases), as well as emotion and motivation.  We varied whether thinking was biased by focusing 

on precise risk-reward tradeoffs (verbatim emphasis) or on simple categorical distinctions 

between options (e.g., getting something or risking getting nothing, a gist emphasis).  In the 

brain, covariation with criminal and noncriminal risk-taking was observed when thinking veered 

away from typical adult biases based on gist.  Noncriminal risk-taking behavior covaried with 
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activation in subcortical emotion and motivation areas (amygdala and striatum), whereas 

criminal behavior was associated with greater activation in temporal and parietal cortices, their 

junction, and insula, areas associated with risk preferences and psychopathy.  Future research 

will examine whether these cognitive biases vary with psychopathy. 
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Table 1: Noncriminal Risky Behavior Covariate Clusters Surviving Family Wise Error Correction  

Contrast Area of Brain 
(AAL Label) 

Brodmann/Anatomical 
Areas 

Voxels 
in 
Label 

Mean t Voxels in 
Cluster 

Co-ordinates 
(Peak)  X  Y  Z 

Verbatim Reverse 
Framing> Mixed Framing 

Putamen_L Putamen, 13. 12 3.7834 208 -26 0 26 

 Caudate_L  7 3.5373   
       
Verbatim + Mixed 
GainRisky > 

Amygdala_L Amygdala,  50 4.0243 251 -30 -4 -12 

Verbatim + Mixed 
GainSure 

Hippocampus_L Putamen 36 3.7481   

 Putamen_L  32 4.1887   
 Insula_L  3 3.6548   
 Palidum_L  3 3.7653   
       
 Caudate_L Putamen, 12,  43 4.1363 455 -30 -10 22 
 Insula_L Caudate Body 34 3.8145   
 Putamen_L  22 3.6735   
 Thalamus_L  4 3.7344   
 Rolandic_Oper_R  1 3.5890   
       
 Postcentral_L 7, 40, 5, 3, 4 160 3.9278 448 -30 -38 54 
 Parietal_Sup_L  97 3.8155   
 Parietal_Inf_L  43 3.7032   
 Precuneus_L  38 3.6232   
 Precentral_L  2 3.4137   
       
 Postcentral_R 31, 40, 5, 3, 7 159 3.8297 449 18 -30 42 
 Cingulum_Mid_R  33 3.9148   
 Parietal_Sup_R  17 3.6393   
 Parietal_Inf_R  8 3.7366   
 Precuneus_R  7 3.6776   
 Supramarginal_R  5 3.7826   
       
 Cuneus_L Corpus  29 4.0793 292 -20 -54 26 
 Precuneus_L Callosum, 7 3.7125   
 Angular_L 31 3 3.4382   
       

Note: AAL = Anatomical Automatic Labeling. Clusters in bold indicate that the cluster peak is also significant after 
family wise error correction. 
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Table 2: Criminal Risky Behavior Covariate Clusters Surviving Family Wise Error Correction in Framing 
Inconsistent Contrasts  
 

Contrast Area of Brain  
(AAL Label) 

Brodmann/Anatomical 
Areas 

Voxels 
in 
Label 

Mean t Voxels 
in 
Cluster 

Co-ordinates 
(Peak)  X  Y  Z 

Verbatim Reverse Framing > 
Gist Framing 
 

Temporal_Mid_R 13, 22, 41 123 3.9980 234 56 -50 14 
Temporal_Sup_R  94 3.7657   

Mixed Reverse Framing > 
Gist Framing 

Angular_R 40,2,13 155 3.9114 350 54 -52 34 
SupraMarginal_R  122 3.6392   
Temporal_Sup_R  31 3.5306   
Temporal_Mid_R  25 3.5226   
Parietal_Inf_R  10 3.6980   

Gist Reverse Framing>Gist 
Framing 

Lingual_L 18,19,30,29 239 3.9010 285 -18 -58 -2 
Calcarine_L  39 3.6514   
      
SupraMarginal_R 
Supramarginal Gyrus 

13 72 3.8875 244 48 -42 26 

Temporal_Sup_R  50 3.8162   
Temporal_Mid_R  26 3.8924   
Angular_R  20 3.6017   

Gist + Mixed LossSure > 
Gist + Mixed LossRisky 

Anterior Cingulate 24,33,32 94 3.7784 239 4 30 4 
Extra Nuclear  56 3.8523   
Cingulate Gyrus  16 3.6446   

       
 Inferior parietal lobule 40,2,13,1 219 3.8357 282 56 -34 28 
 Postcentral Gyrus  46 3.7439   
 Insula  8 3.6120   
 Supramarginal Gyrus  8 3.6023   
       
Gist LossSure > Gist 
LossRisky 

Inferior Parietal 
Lobule 

40,21,13,37,42,22,19,39 342 4.3882 1108 42 -46 18 

 Temporal_Mid_R  269 4.1548   
 Temporal_Sup_R  173 4.1520   
 Supramarginal_R  139 4.0404   
 Postcentral Gyrus  87 4.2665   
 Sub-Gyral  52 4.6382   
 Insula  36 4.2253   
 Middle Occipital 

Gyrus 
 6 3.9825   

 Temporal_Inf_R  3 3.7031   
       
 Precuneus 7,31,18,19,17 417 4.1080 890 -22 -58 18 
 Cuneus  256 3.9605   
 Sub-gyral  164 4.5057   
 Posterior Cingulate  25 3.8609   
 Extra-Nuclear  16 4.1283   
 Middle Occipital 

Gyrus 
 12 3.7304   

Note: AAL = Anatomical Automatic Labeling. Clusters in bold indicate that the cluster peak is also significant after 
family wise error correction.  
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Table 3: Criminal Risky Behavior Covariate Clusters Surviving Family Wise Error Correction in Framing 
Consistent Contrasts  
 

Contrast Area of Brain  
(AAL Label) 

Brodmann/Anatomical 
Areas 

Voxels 
in Label 

Mean t Voxels 
in 
Cluster 

Co-ordinates 
(Peak) X  Y  Z 

LossRisky > LossSure Pre-Supplementary Motor 
Area 

     

 Supp_Motor_Area_L 6,8,32 210 4.3855 229 -4 6 58 
     Supp_Motor_Area_R  15    

Verbatim LossRisky 
>Verbatim LossSure 

Right DLPFC 10  3.9996 199 36 54 8 
     Frontal_Mid_R  158 4.0875   
     Frontal_Sup_R  41 3.9511   

Left DLPFC 10, 46  3.9961 228 -34 54 14 
     Frontal_Mid_L  222 3.9576   
     Frontal_Inf_Tri_L 
 

 6 3.6039   

Note: AAL = Anatomical Automatic Labeling. Clusters in bold indicate that the cluster peak is also significant after 
family wise error correction.  
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Figure	2:	Covariation	of	cluster	with	peak	in	amygdala	with	noncriminal		risky	behavior		
in	Verbatim	+	Mixed	GainRisky	>	Verbatim	+	Mixed	GainSure	(activation	at	p<.001).	 	
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Figure	3:	Covariation	of	parietal	cluster	with	criminal	risky	behavior	in	Gist	LossSure	>		
Gist	LossRisky	(activation	at	p<.001).	
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Figure	4.	Covariation	of	activation	in	the	left	and	right	dlPFC	with	criminal	risky	behavior	in		
Verbatim	LossRisky	>	Verbatim	LossSure	(activation	at		p<.001).  
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Supplemental Materials 

 
Table 1S: Noncriminal Risky Behavior Covariate Clusters Surviving Family Wise Error Correction  
 

Contrast Area of Brain 
(AAL Label) 

Brodmann/Anatomical 
Areas 

Voxels 
in Label 

Mean t Voxels 
in 
Cluster 

Co-ordinates 
(Peak)  X  Y  Z 

Verbatim Reverse 
Framing> Mixed 

Putamen_L Putamen, 13. 12 3.7834 208 -26 0 26 

Framing Caudate_L  7 3.5373   
       
Verbatim + Mixed 
GainRisky > 

Amygdala_L Amygdala,  50 4.0243 251 -30 -4 -12 

Verbatim + Mixed 
GainSure 

Hippocampus_
L 

Putamen 36 3.7481   

 Putamen_L  32 4.1887   
 Insula_L  3 3.6548   
 Palidum_L  3 3.7653   
       
 Cerebelum_6_L 18, Dentate 259 3.7563 693 0 -78 -28 
 Cerebelum_Crus

1_L 
 120 3.5936   

 Vermis_7  101 4.0132   
 Vermis_6  100 4.0021   
 Cerebelum_6_R  37 3.7477   
 Cerebelum_Crus

2_L 
 16 3.8476   

 Lingual_R  11 3.6369   
 Cerebelum_4_5_

L 
 6 3.5223   

 Cerebelum_8_L  3 3.5397   
 Fusiform_L  2 3.5441   
 Vermis_8  2 3.5518   
 Cerebelum_Crus

1_R 
 1 3.7766   

       
 Caudate_L Putamen, 12,  43 4.1363 455 -30 -10 22 
 Insula_L Caudate Body 34 3.8145   
 Putamen_L  22 3.6735   
 Thalamus_L  4 3.7344   
 Rolandic_Oper_

R 
 1 3.5890   

       
 Postcentral_L 7, 40, 5, 3, 4 160 3.9278 448 -30 -38 54 
 Parietal_Sup_L  97 3.8155   
 Parietal_Inf_L  43 3.7032   
 Precuneus_L  38 3.6232   
 Precentral_L  2 3.4137   
       
 Postcentral_R 31, 40, 5, 3, 7 159 3.8297 449 18 -30 42 
 Cingulum_Mid_

R 
 33 3.9148   

 Parietal_Sup_R  17 3.6393   
 Parietal_Inf_R  8 3.7366   
 Precuneus_R  7 3.6776   
 Supramarginal_

R 
 5 3.7826   

       
 Cuneus_L Corpus  29 4.0793 292 -20 -54 26 



Criminal Risk Taking in the Brain   55	

 Precuneus_L Callosum, 7 3.7125   
 Angular_L 31 3 3.4382   
       
Gist LossSure > Gist 
LossRisky 

Cerebelum_6_R 19 130 4.0668 247 18 -66 -16 

 Cerebelum_4_5_
R 

 77 3.7754   

 Vermis_4_5  18 3.7813   
 Lingual_R  11 3.8349   
 Fusiform_R  6 3.7065   
 Vermis_3  3 3.7686   
 Cerebelum_3_R  2 3.7343   

Note: AAL = Anatomical Automatic Labeling. Clusters in bold indicate that the cluster peak is also significant after 
family wise error correction.  
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Table 2S: Criminal Risky Behavior Covariate Clusters Surviving Family Wise Error Correction in Framing 
Inconsistent Contrasts  
 

Contrast Area of Brain  
(AAL Label) 

Brodmann/Anatomical 
Areas 

Voxels 
in Label 

Mean t Voxels 
in 
Cluster 

Co-
ordinates 
(Peak)  X  Y  
Z 

Verbatim Reverse 
Framing > Gist Framing 
 

Temporal_Mid_R 13, 22, 41 123 3.9980 234 56 -50 14 
Temporal_Sup_R  94 3.7657   
      
Lingual_R 19,18 243 3.7480 281 12 -48 -8 
Cerebelum_4_5_R  38 3.9250   
      
Cuneus_R 18,7 270 3.6168 652 20 -72 24 
Calcarine_R  124 3.6829   
Precuneus_R  94 3.6853   
Cuneus_L  65 3.5374   
Occipital_Sup_R  51 3.5327   
Calcarine_L  37 3.5945   

Mixed Reverse Framing > 
Gist Framing 

Calcarine_L 18,17,23,30 242 4.1853 598 -10 -86 12 
Calcarine_R  138 3.8392   
Cuneus_L  118 4.1180   
Cuneus_R  51 3.8690   
Occipital_Supp_L  42 3.6780   
Lingual_L  6 3.4600   
      
Angular_R 40,2,13 155 3.9114 350 54 -52 34 
SupraMarginal_R  122 3.6392   
Temporal_Sup_R  31 3.5306   
Temporal_Mid_R  25 3.5226   
Parietal_Inf_R  10 3.6980   

Gist Reverse 
Framing>Gist Framing 

Lingual_L 18,19,30,29 239 3.9010 285 -18 -58 -2 
Calcarine_L  39 3.6514   
      
Lingual_R  592 3.9693 2005 10 -74 32 
Cuneus_L  349 3.7861   
Cuneus_R  337 4.0014   
Calcarine_R  190 3.6840   
Precuneus_R  136 3.9274   
Calcarine_L  129 3.7136   
Cerebelum_6_R  61 3.6693   
Precuneus_L  52 3.7752   
Occipital_Sup_L  48 3.8671   
Cerebelum_4_5_R  33 3.5935   
Vermis_6  31 3.6854   
Fusiform_R  20 3.6440   
Vermis_4_5  12 3.7008   
Occipital_Mid_L 
 

 7 3.5691   

      
SupraMarginal_R 
Supramarginal Gyrus 

13 72 3.8875 244 48 -42 26 

Temporal_Sup_R  50 3.8162   
Temporal_Mid_R  26 3.8924   
Angular_R  20 3.6017   

Gist + Mixed LossSure > 
Gist + Mixed LossRisky 

Anterior Cingulate 24,33,32 94 3.7784 239 4 30 4 
Extra Nuclear  56 3.8523   
Cingulate Gyrus  16 3.6446   
Sub-Gyral  1 3.4854   
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 Inferior parietal 

lobule 
40,2,13,1 219 3.8357 282 56 -34 28 

 Postcentral Gyrus  46 3.7439   
 Insula  8 3.6120   
 Supramarginal_R  8 3.6023   
 Temporal_Sup_R  1 3.5715   
       
 Lingual Gyrus 18,19 137 3.7783 231 14 -64 -4 
 Culmen  21 3.6370   
 Declive  19 3.6911   
 Fusiform Gyrus  8 3.7005   
 Sub-gyral  3 3.5885   
 Cuneus  2 3.5443   
Gist LossSure > Gist 
LossRisky 

Inferior Parietal 
Lobule 

 342 4.3882 1108 42 -46 18 

 Temporal_Mid_R  269 4.1548   
 Temporal_Sup_R  173 4.1520   
 Supramarginal_R  139 4.0404   
 Postcentral Gyrus  87 4.2665   
 Sub-Gyral  52 4.6382   
 Insula  36 4.2253   
 Middle Occipital 

Gyrus 
 6 3.9825   

 Temporal_Inf_R  3 3.7031   
 Extra Nuclear  1 3.7688   
       
 Precuneus  417 4.1080 890 -22 -58 18 
 Cuneus  256 3.9605   
 Sub-gyral  164 4.5057   
 Posterior Cingulate  25 3.8609   
 Extra-Nuclear  16 4.1283   
 Middle Occipital 

Gyrus 
 12 3.7304   

Note: AAL = Anatomical Automatic Labeling. Clusters in bold indicate that the cluster peak is also significant after 
family wise error correction.
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Gist LossSure > Gist LossRisky  

  
Gist + Mixed LossSure > Gist + Mixed LossRisky 

  
Gist Reverse Framing > Gist Framing 

  
Mixed Reverse Framing > Gist Framing 

  
Figure	1S:	Covariation	of	parietal	activations	with	criminal	behavior	in	framing-inconsistent	contrasts	
(activation	at	p<.001).	
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Figure	2S.	Covariation	of	activation	in	supplementary	motor	area	with	criminal	risky	behavior	in	
LossRisky	>	LossSure	(activation	at	p<.001).		
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