2,626 research outputs found

    Half-Life of 14^{14}O

    Get PDF
    We have measured the half-life of 14^{14}O, a superallowed (0+→0+)(0^{+} \to 0^{+}) β\beta decay isotope. The 14^{14}O was produced by the 12^{12}C(3^{3}He,n)14^{14}O reaction using a carbon aerogel target. A low-energy ion beam of 14^{14}O was mass separated and implanted in a thin beryllium foil. The beta particles were counted with plastic scintillator detectors. We find t1/2=70.696±0.052t_{1/2} = 70.696\pm 0.052 s. This result is 1.5σ1.5\sigma higher than an average value from six earlier experiments, but agrees more closely with the most recent previous measurement.Comment: 10 pages, 5 figure

    Water exchange at a hydrated platinum electrode is rare and collective

    Get PDF
    We use molecular dynamics simulations to study the exchange kinetics of water molecules at a model metal electrode surface -- exchange between water molecules in the bulk liquid and water molecules bound to the metal. This process is a rare event, with a mean residence time of a bound water of about 40 ns for the model we consider. With analysis borrowed from the techniques of rare-event sampling, we show how this exchange or desorption is controlled by (1) reorganization of the hydrogen bond network within the adlayer of bound water molecules, and by (2) interfacial density fluctuations of the bulk liquid adjacent to the adlayer. We define collective coordinates that describe the desorption mechanism. Spatial and temporal correlations associated with a single event extend over nanometers and tens of picoseconds.Comment: 10 pages, 9 figure

    Classifying faces by sex is more accurate with 3D shape information than with texture

    No full text
    Purpose: We compared quality of information available in 3D surface models versus texture maps for classifying human faces by sex. Methods: 3D surface models and texture maps from laser scans of 130 human heads (65 male, 65 female) were analyzed with separate principal components analyses (PCAs). Individual principal components (PCs) from the 3D head data characterized complex structural differences between male and female heads. Likewise, individual PCs in the texture analysis contrasted characteristically male vs. female texture patterns (e.g., presence/absence of facial hair shadowing). More formally, representing faces with only their projection coefficients onto the PCs, and varying the subspace from 1 to 50 dimensions, we trained a series of perceptrons to predict the sex of the faces using either the 3D or texture data. A "leave-one-out" technique was applied to measure the gen-eralizability of the perceptron's sex predictions. Results: While very good sex generalization performance was obtained for both representations, even with very low dimensional subspaces (e.g., 76.1 correct with only one 3D projection coefficient), the 3D data supported more accurate sex classification across nearly the entire range of subspaces tested. For texture, 93.8 correct sex generalization was achieved with a minimun subspace of 20 projection coefficients. For 3D data, 96.9 correct generalization was achieved with 17 projection coefficients. Conclusions: These data highlight the importance of considering the kinds of information available in different face representations with respect to the task demands

    Negative time delay for wave reflection from a one-dimensional semi-harmonic well

    Full text link
    It is reported that the phase time of particles which are reflected by a one-dimensional semi-harmonic well includes a time delay term which is negative for definite intervals of the incoming energy. In this interval, the absolute value of the negative time delay becomes larger as the incident energy becomes smaller. The model is a rectangular well with zero potential energy at its right and a harmonic-like interaction at its left.Comment: 6 pages, 5 eps figures. Talk presented at the XXX Workshop on Geometric Methods in Physics, Bialowieza, Poland, 201

    SWI/SNF-like chromatin remodeling factor Fun30 supports point centromere function in S. cerevisiae

    Get PDF
    Budding yeast centromeres are sequence-defined point centromeres and are, unlike in many other organisms, not embedded in heterochromatin. Here we show that Fun30, a poorly understood SWI/SNF-like chromatin remodeling factor conserved in humans, promotes point centromere function through the formation of correct chromatin architecture at centromeres. Our determination of the genome-wide binding and nucleosome positioning properties of Fun30 shows that this enzyme is consistently enriched over centromeres and that a majority of CENs show Fun30-dependent changes in flanking nucleosome position and/or CEN core micrococcal nuclease accessibility. Fun30 deletion leads to defects in histone variant Htz1 occupancy genome-wide, including at and around most centromeres. FUN30 genetically interacts with CSE4, coding for the centromere-specific variant of histone H3, and counteracts the detrimental effect of transcription through centromeres on chromosome segregation and suppresses transcriptional noise over centromere CEN3. Previous work has shown a requirement for fission yeast and mammalian homologs of Fun30 in heterochromatin assembly. As centromeres in budding yeast are not embedded in heterochromatin, our findings indicate a direct role of Fun30 in centromere chromatin by promoting correct chromatin architecture

    {3D} Morphable Face Models -- Past, Present and Future

    No full text
    In this paper, we provide a detailed survey of 3D Morphable Face Models over the 20 years since they were first proposed. The challenges in building and applying these models, namely capture, modeling, image formation, and image analysis, are still active research topics, and we review the state-of-the-art in each of these areas. We also look ahead, identifying unsolved challenges, proposing directions for future research and highlighting the broad range of current and future applications

    Vlasov Description Of Dense Quark Matter

    Get PDF
    We discuss properties of quark matter at finite baryon densities and zero temperature in a Vlasov approach. We use a screened interquark Richardson's potential consistent with the indications of Lattice QCD calculations. We analyze the choices of the quark masses and the parameters entering the potential which reproduce the binding energy (B.E.) of infinite nuclear matter. There is a transition from nuclear to quark matter at densities 5 times above normal nuclear matter density. The transition could be revealed from the determination of the position of the shifted meson masses in dense baryonic matter. A scaling form of the meson masses in dense matter is given.Comment: 15 pages 4 figure
    • …
    corecore