67 research outputs found

    Physiological and Morphological Correlates of Presynaptic Inhibition in Primary Afferents of the Lamprey Spinal Cord

    Get PDF
    Patch-clamp recordings in a whole-cell mode were performed on dorsal sensory cells enzymatically isolated from the spinal cord of two lamprey species, Ichthyomyzon unicuspis and Lampetra fluviatilis. The voltage-activated currents through calcium channels were analysed. GABA and the specific GABAB receptor agonist baclofen reduced the peak amplitude of inward Ba2+ current, as a robust alternate charge carrier through voltage-dependent Ca2+ channels. These effects were dose-dependent and reversible. GABAB receptor antagonists, 2-hydroxysaclofen and δ-amino-n-valeric acid, blocked the reduction of Ba2+ currents by GABA and baclofen, while bicuculline, a GABAA receptor antagonist, had no blocking action. GABA and baclofen did not modify the dorsal sensory cell membrane conductance, indicating that they did not activate ligand-gated channels. However, GABA, but not baclofen, considerably increased membrane conductance and induced Cl- currents in isolated multipolar neurons (presumably interneurons and/or motoneurons). These findings suggest that GABA and baclofen action on lamprey dorsal sensory cells is mediated by GABAB receptors. We concluded that GABA-mediated presynaptic inhibition of lamprey dorsal sensory cell fibers results from GABAB receptor activation followed by a decrease of inward voltage-activated calcium currents. Appositions of GABA-immunoreactive boutons to horseradish peroxidase-labeled fibers from the dorsal root were observed at the ultrastructural level in the dorsal column using postembedding immunogold cytochemistry. It seems likely that these appositions represent the morphological substrate of dorsal sensory cell fiber presynaptic inhibition. In very rare cases, ultrastructural features were observed which could be interpreted as synaptic specializations between the GABA-immunoreactive boutons and the primary afferent fibers. The extrasynaptic action of GABA as a basis of presynaptic inhibition of this population of primary afferent neurons is discussed

    Immunohistochemical localization of calbindin-D28K and calretinin in the lamprey retina.

    No full text
    Calbindin-D28K and calretinin are homologous cytosolic calcium binding proteins localized in many retinal neurons from different species. In this report, location of cells immunoreactive to both proteins was investigated in the retina of the lamprey, Lampetra fluviatilis. This organism constitutes one of the older representative vertebrates and possesses a peculiar organization, probably unique: two-thirds of the ganglion cells are in the classical amacrine cell layer and the nerve fiber layer is located in the scleral part of the inner plexiform layer. Calbindin-like immunoreactivity was demonstrated in large bipolar cells and in cell bodies located in the inner retina. Although the distinction between labelled ganglion cells and labelled amacrine cells was rendered difficult, we hypothesized that the majority of calbindin-immunoreactive cells observed in the inner retina are ganglion cells, because of the high number of labelled fibers in the nerve fiber layer. Calretinin-like immunoreactivity was detected in both large and small bipolar cells, and also in cells located in the inner retina. Since few calretinin-immunoreactive fibers were observed in the nerve fiber layer, we assume that the latter category of cells are amacrine cells. Horizontal cells were both negative for calbindin and calretin-like immunoreactivities. Calbindin and calretinin, which are present in cones from many species, could not be detected in the photoreceptor layer favouring the rod-dominated lamprey retina. Although their distribution differs from those observed in most vertebrates, the present results indicate the good conservation of both calcium binding proteins in the retina during the vertebrate evolution.Journal ArticleResearch Support, Non-U.S. Gov'tFLWNASCOPUS: ar.jinfo:eu-repo/semantics/publishe
    • …
    corecore