22 research outputs found

    Dietary 14C reservoir effects and the chronology of prehistoric burials at Sakhtysh, central European Russia

    Get PDF
    We present a robust radiocarbon (14C) chronology for burials at Sakhtysh, in European Russia, where nearly 180 inhumations of Lyalovo and Volosovo pottery-using hunter-gatherer-fishers represent the largest known populations of both groups. Past dating attempts were restricted by poor understanding of dietary 14C reservoir effects (DREs). We developed a DRE correction approach that uses multiple linear regression of differences in 14C, δ13C, and δ15N between bones and teeth of the same individuals to predict DREs of up to approximately 900 years. Our chronological model dates Lyalovo burials to the early fifth millennium BCE, and Volosovo burials to the mid-fourth to early third millennium. It reveals a change in the subsistence economy at approximately 3300 BCE, coinciding with a reorientation of trade networks, and dates the final burial to the early Fatyanovo period, the regional expression of the Yamnaya/Corded Ware expansion. Our approach is applicable when freshwater 14C reservoir effects are poorly constrained and grave goods cannot be dated directly

    Genome-wide data from two early Neolithic East Asian individuals dating to 7700 years ago.

    Get PDF
    Ancient genomes have revolutionized our understanding of Holocene prehistory and, particularly, the Neolithic transition in western Eurasia. In contrast, East Asia has so far received little attention, despite representing a core region at which the Neolithic transition took place independently ~3 millennia after its onset in the Near East. We report genome-wide data from two hunter-gatherers from Devil's Gate, an early Neolithic cave site (dated to ~7.7 thousand years ago) located in East Asia, on the border between Russia and Korea. Both of these individuals are genetically most similar to geographically close modern populations from the Amur Basin, all speaking Tungusic languages, and, in particular, to the Ulchi. The similarity to nearby modern populations and the low levels of additional genetic material in the Ulchi imply a high level of genetic continuity in this region during the Holocene, a pattern that markedly contrasts with that reported for Europe.V.S. was supported by the Gates Cambridge Trust. R.P. was funded by the European Research Council (ERC) starting grant ADNABIOARC (263441) and the Irish Research Council Advanced Research Project Grant from January 2014 to December 2016. M.H. was supported by ERC Consolidator Grant 310763 “GeneFlow.” This work was supported by the Research Fund (1.140113.01) of Ulsan National Institute of Science and Technology to J.B. This work was also supported by the Research Fund (14-BR-SS-03) of Civil-Military Technology Cooperation Program to J.B. and Y.S.C. M.G.-L. was supported by a Biotechnology and Biological Sciences Research Council Doctoral Training Partnerships studentship. A.M. and A.E. were supported by the ERC Consolidator Grant 647787 “LocalAdaptation.” D.G.B. was funded by ERC Investigator grant 295729-CodeX

    The population history of northeastern Siberia since the Pleistocene.

    Get PDF
    Northeastern Siberia has been inhabited by humans for more than 40,000 years but its deep population history remains poorly understood. Here we investigate the late Pleistocene population history of northeastern Siberia through analyses of 34 newly recovered ancient genomes that date to between 31,000 and 600 years ago. We document complex population dynamics during this period, including at least three major migration events: an initial peopling by a previously unknown Palaeolithic population of 'Ancient North Siberians' who are distantly related to early West Eurasian hunter-gatherers; the arrival of East Asian-related peoples, which gave rise to 'Ancient Palaeo-Siberians' who are closely related to contemporary communities from far-northeastern Siberia (such as the Koryaks), as well as Native Americans; and a Holocene migration of other East Asian-related peoples, who we name 'Neo-Siberians', and from whom many contemporary Siberians are descended. Each of these population expansions largely replaced the earlier inhabitants, and ultimately generated the mosaic genetic make-up of contemporary peoples who inhabit a vast area across northern Eurasia and the Americas

    Stone Age Yersinia pestis genomes shed light on the early evolution, diversity, and ecology of plague

    Get PDF
    [Significance] The bacterium Yersinia pestis has caused numerous historically documented outbreaks of plague and research using ancient DNA could demonstrate that it already affected human populations during the Neolithic. However, the pathogen’s genetic diversity, geographic spread, and transmission dynamics during this early period of Y. pestis evolution are largely unexplored. Here, we describe a set of ancient plague genomes up to 5,000 y old from across Eurasia. Our data demonstrate that two genetically distinct forms of Y. pestis evolved in parallel and were both distributed across vast geographic distances, potentially occupying different ecological niches. Interpreted within the archeological context, our results suggest that the spread of plague during this period was linked to increased human mobility and intensification of animal husbandry.The bacterial pathogen Yersinia pestis gave rise to devastating outbreaks throughout human history, and ancient DNA evidence has shown it afflicted human populations as far back as the Neolithic. Y. pestis genomes recovered from the Eurasian Late Neolithic/Early Bronze Age (LNBA) period have uncovered key evolutionary steps that led to its emergence from a Yersinia pseudotuberculosis-like progenitor; however, the number of reconstructed LNBA genomes are too few to explore its diversity during this critical period of development. Here, we present 17 Y. pestis genomes dating to 5,000 to 2,500 y BP from a wide geographic expanse across Eurasia. This increased dataset enabled us to explore correlations between temporal, geographical, and genetic distance. Our results suggest a nonflea-adapted and potentially extinct single lineage that persisted over millennia without significant parallel diversification, accompanied by rapid dispersal across continents throughout this period, a trend not observed in other pathogens for which ancient genomes are available. A stepwise pattern of gene loss provides further clues on its early evolution and potential adaptation. We also discover the presence of the flea-adapted form of Y. pestis in Bronze Age Iberia, previously only identified in in the Caucasus and the Volga regions, suggesting a much wider geographic spread of this form of Y. pestis. Together, these data reveal the dynamic nature of plague’s formative years in terms of its early evolution and ecology.This study was funded by the Max Planck Society, Max Planck Harvard Research Center for the Archaeoscience of the Ancient Mediterranean and the European Research Council under the European Union’s Horizon 2020 research and innovation program under Grant Agreement 771234 – PALEoRIDER (to W.H.), 856453 – HistoGenes (to J.K.), and 834616 – ARCHCAUCASUS (to S.H.). The Heidelberg Academy of Science financed the genetic and archeological research on human individuals from the Augsburg region within the project WIN Kolleg: “Times of Upheaval: Changes of Society and Landscape at the Beginning of the Bronze Age. M.E. was supported by the award “Praemium Academiae” of the Czech Academy of Sciences. M.D. was supported by the project RVO 67985912 of the Institute of Archaeology of the Czech Academy of Sciences, Prague. I.O. was supported by the Ramón y Cajal grant from Ministerio de Ciencia e Innovación, Spanish Government (RYC2019-027909-I). A. H€ubner was supported by the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy (EXC 2051 – Project-ID 390713860). J.F.-E. and J.A.M.-A. were supported by the Diputación Foral de Alava, IT 1223-19, Gobierno Vasco. A. Buzhilova was supported by the Center of Information Technologies and Systems (CITIS), Moscow, Russia 121041500329-0. L. M., L.B.D., and E. Khussainova were supported by the Grant AP08856654, Ministry of Education and Science of the Republic of Kazakhstan. A. Beisenov was supported by the Grant AP08857177, Ministry of Education and Science of the Republic of Kazakhstan.Peer reviewe

    Partner’s body odor vs. relatives’ body odor: a comparison of female associations

    No full text
    People positively appraise odors of individuals who are genetically different from themselves. Here we analyzed the relationship between perceived similarity of body odor to the judges’ relatives and their partners, and characteristics attributed to the odor donor. Seventy-six women were asked to smell one of the scents of twenty-nine men, and rate variables related to potential sexual interest in odor donor. We hypothesized that characteristics related to potential sexual interest would be associated with odor donors smelling similar to a partner, rather than with odor donors smelling similar to a relative. We found that perceived similarity to a partner’s scent was positively correlated with ratings of variables related to potential sexual interest in odor donor, whereas the resemblance to a close relative’s scent did not correlate with these assessments

    Study on the criteria for assessing skull-face correspondence in craniofacial superimposition

    No full text
    Craniofacial superimposition has the potential to be used as an identification method when other traditional biological techniques are not applicable due to insufficient quality or absence of ante-mortem and post-mortem data. Despite having been used in many countries as a method of inclusion and exclusion for over a century it lacks standards. Thus, the purpose of this research is to provide forensic practitioners with standard criteria for analysing skull-face relationships. Thirty-seven experts from 16 different institutions participated in this study, which consisted of evaluating 65 criteria for assessing skull-face anatomical consistency on a sample of 24 different skull-face superimpositions. An unbiased statistical analysis established the most objective and discriminative criteria. Results did not show strong associations, however, important insights to address lack of standards were provided. In addition, a novel methodology for understanding and standardizing identification methods based on the observation of morphological patterns has been proposed

    Palaeo-Eskimo genetic ancestry and the peopling of Chukotka and North America

    No full text
    Much of the American Arctic was first settled 5,000 years ago, by groups of people known as Palaeo-Eskimos. They were subsequently joined and largely displaced around 1,000 years ago by ancestors of the present-day Inuit and Yup’ik1,2,3. The genetic relationship between Palaeo-Eskimos and Native American, Inuit, Yup’ik and Aleut populations remains uncertain4,5,6. Here we present genomic data for 48 ancient individuals from Chukotka, East Siberia, the Aleutian Islands, Alaska, and the Canadian Arctic. We co-analyse these data with data from present-day Alaskan Iñupiat and West Siberian populations and published genomes. Using methods based on rare-allele and haplotype sharing, as well as established techniques4,7,8,9, we show that Palaeo-Eskimo-related ancestry is ubiquitous among people who speak Na-Dene and Eskimo–Aleut languages. We develop a comprehensive model for the Holocene peopling events of Chukotka and North America, and show that Na-Dene-speaking peoples, people of the Aleutian Islands, and Yup’ik and Inuit across the Arctic region all share ancestry from a single Palaeo-Eskimo-related Siberian source
    corecore