218 research outputs found

    Teaching Disciplines "History of Russia" and "Country Studies" to Foreign Students: Problems and Solutions

    Get PDF
    The present paper is focused on the problem of teaching foreign students such disciplines as "Country studies" and "History of Russia", which appear to be compulsory for the international students, getting higher education in Russia. Studying these disciplines, students meet some difficulties due to various reasons, beginning with poor knowledge of Russian language and ending with ethical problems. A lecturer needs to cross this socio-cultural and linguistic barrier and find solutions in order to give the full information in accordance with the educational working program. The research has an applied character. It is based on the sociological survey conducted among the foreign students of National Research Tomsk Polytechnic University. The aim of the paper is to demonstrate real difficulties of students and lecturers at studying and teaching disciplines "Country studies" and "History of Russia" and to offer solutions for overcoming these problems

    Tuning the High-Pressure Phase Behaviour of Highly Compressible Zeolitic Imidazolate Frameworks: From Discontinuous to Continuous Pore Closure by Linker Substitution

    Get PDF
    The high‐pressure behaviour of flexible zeolitic imidazolate frameworks (ZIFs) of the ZIF‐62 family with the chemical composition M(im)(2−x )(bim)(x) is presented (M(2+)=Zn(2+), Co(2+); im(−)=imidazolate; bim(−)=benzimidazolate, 0.02≤x≤0.37). High‐pressure powder X‐ray diffraction shows that the materials contract reversibly from an open pore ( op ) to a closed pore ( cp ) phase under a hydrostatic pressure of up to 4000 bar. Sequentially increasing the bim(−) fraction (x) reinforces the framework, leading to an increased threshold pressure for the op ‐to‐ cp phase transition, while the total volume contraction across the transition decreases. Most importantly, the typical discontinuous op ‐to‐ cp transition (first order) changes to an unusual continuous transition (second order) for x≥0.35. This allows finetuning of the void volume and the pore size of the material continuously by adjusting the pressure, thus opening new possibilities for MOFs in pressure‐switchable devices, membranes, and actuators

    Increasing alkyl chain length in a series of layered metal–organic frameworks aids ultrasonic exfoliation to form nanosheets

    Get PDF
    Metal–organic framework nanosheets (MONs) are attracting increasing attention as a diverse class of two-dimensional materials derived from metal–organic frameworks (MOFs). The principles behind the design of layered MOFs that can readily be exfoliated to form nanosheets, however, remain poorly understood. Here we systematically investigate an isoreticular series of layered MOFs functionalized with alkoxy substituents in order to understand the effect of substituent alkyl chain length on the structure and properties of the resulting nanosheets. A series of 2,5-alkoxybenzene-1,4-dicarboxylate ligands (O2CC6H2(OR)2CO2, R = methyl–pentyl, 1–5, respectively) was used to synthesize copper paddle-wheel MOFs. Rietveld and Pawley fitting of powder diffraction patterns for compounds Cu(3–5)(DMF) showed they adopt an isoreticular series with two-dimensional connectivity in which the interlayer distance increases from 8.68 Å (R = propyl) to 10.03 Å (R = pentyl). Adsorption of CO2 by the MOFs was found to increase from 27.2 to 40.2 cm3 g–1 with increasing chain length, which we attribute to the increasing accessible volume associated with increasing unit-cell volume. Ultrasound was used to exfoliate the layered MOFs to form MONs, with shorter alkyl chains resulting in higher concentrations of exfoliated material in suspension. The average height of MONs was investigated by AFM and found to decrease from 35 ± 26 to 20 ± 12 nm with increasing chain length, with the thinnest MONs observed being only 5 nm, corresponding to five framework layers. These results indicate that careful choice of ligand functionalities can be used to tune nanosheet structure and properties, enabling optimization for a variety of applications

    The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility

    Get PDF
    Cyclin-dependent kinases (Cdks) fulfill key functions in many cellular processes, including cell cycle progression and cytoskeletal dynamics. A limited number of Cdk substrates have been identified with few demonstrated to be regulated by Cdk-dependent phosphorylation. We identify on protein expression arrays novel cyclin E–Cdk2 substrates, including SIRT2, a member of the Sirtuin family of NAD+-dependent deacetylases that targets α-tubulin. We define Ser-331 as the site phosphorylated by cyclin E–Cdk2, cyclin A–Cdk2, and p35–Cdk5 both in vitro and in cells. Importantly, phosphorylation at Ser-331 inhibits the catalytic activity of SIRT2. Gain- and loss-of-function studies demonstrate that SIRT2 interfered with cell adhesion and cell migration. In postmitotic hippocampal neurons, neurite outgrowth and growth cone collapse are inhibited by SIRT2. The effects provoked by SIRT2, but not those of a nonphosphorylatable mutant, are antagonized by Cdk-dependent phosphorylation. Collectively, our findings identify a posttranslational mechanism that controls SIRT2 function, and they provide evidence for a novel regulatory circuitry involving Cdks, SIRT2, and microtubules

    A c-Myc–SIRT1 feedback loop regulates cell growth and transformation

    Get PDF
    The protein deacetylase SIRT1 has been implicated in a variety of cellular functions, including development, cellular stress responses, and metabolism. Increasing evidence suggests that similar to its counterpart, Sir2, in yeast, Caenorhabditis elegans, and Drosophila melanogaster, SIRT1 may function to regulate life span in mammals. However, SIRT1's role in cancer is unclear. During our investigation of SIRT1, we found that c-Myc binds to the SIRT1 promoter and induces SIRT1 expression. However, SIRT1 interacts with and deacetylates c-Myc, resulting in decreased c-Myc stability. As a consequence, c-Myc's transformational capability is compromised in the presence of SIRT1. Overall, our experiments identify a c-Myc–SIRT1 feedback loop in the regulation of c-Myc activity and cellular transformation, supporting/suggesting a role of SIRT1 in tumor suppression

    Tuning the Mechanical Response of Metal−Organic Frameworks by Defect Engineering

    Get PDF
    The incorporation of defects into crystalline materials provides an important tool to fine-tune properties throughout various fields of materials science. We performed high-pressure powder X-ray diffraction experiments, varying pressures from ambient to 0.4 GPa in 0.025 GPa increments to probe the response of defective UiO-66 to hydrostatic pressure for the first time. We observe an onset of amorphization in defective UiO-66 samples around 0.2 GPa and decreasing bulk modulus as a function of defects. Intriguingly, the observed bulk moduli of defective UiO-66­(Zr) samples do not correlate with defect concentration, highlighting the complexity of how defects are spatially incorporated into the framework. Our results demonstrate the large impact of point defects on the structural stability of metal–organic frameworks (MOFs) and pave the way for experiment-guided computational studies on defect engineered MOFs
    corecore