25 research outputs found

    Site-fidelity and spatial movements of western North Pacific gray whales on their summer range off Sakhalin, Russia

    Get PDF
    The Western North-Pacific (WNP) gray whale feeding grounds are off the northeastern coast of Sakhalin Island, Russia and is comprised of a nearshore and offshore component that can be distinguished by both depth and location. Spatial movements of gray whales within their foraging grounds were examined based on 13 years of opportunistic vessel and shore-based photo-identification surveys. Site fidelity was assessed by examining annual return and resighting rates. Lagged Identification Rates (LIR) analyses were conducted to estimate the residency and transitional movement patterns within the two components of their feeding grounds. In total 243 individuals were identified from 2002-2014, among these were 94 calves. The annual return rate over the period 2002-2014 was 72%, excluding 35 calves only seen one year. Approximately 20% of the individuals identified from 2002-2010 were seen every year after their initial sighting (including eight individuals that returned for 13 consecutive years). The majority (239) of the WNP whales were observed in the nearshore area while only half (122) were found in the deeper offshore area. Within a foraging season, there was a significantly higher probability of gray whales moving from the nearshore to the offshore area. No mother-calf pairs, calves or yearlings were observed in the offshore area, which was increasingly used by mature animals. The annual return rates, and population growth rates that are primarily a result of calf production with little evidence of immigration, suggest that this population is demographically self-contained and that both the nearshore and offshore Sakhalin feeding grounds are critically important areas for their summer annual foraging activities. The nearshore habitat is also important for mother-calf pairs, younger individuals, and recently weaned calves. Nearshore feeding could also be energetically less costly compared to foraging in the deeper offshore habitat and provide more protection from predators, such as killer whales

    The inference of gray whale (Eschrichtius robustus) historical population attributes from whole-genome sequences

    Get PDF
    Commercial whaling caused extensive demographic declines in many great whale species, including gray whales that were extirpated from the Atlantic Ocean and dramatically reduced in the Pacific Ocean. The Eastern Pacific gray whale has recovered since the 1982 ban on commercial whaling, but the Western Pacific gray whale-once considered possibly extinct-consists of only about 200 individuals and is considered critically endangered by some international authorities. Herein, we use whole-genome sequencing to investigate the demographic history of gray whales from the Pacific and use environmental niche modelling to make predictions about future gene flow.Our sequencing efforts and habitat niche modelling indicate that: i) western gray whale effective population sizes have declined since the last glacial maximum; ii) contemporary gray whale genomes, both eastern and western, harbor less autosomal nucleotide diversity than most other marine mammals and megafauna; iii) the extent of inbreeding, as measured by autozygosity, is greater in the Western Pacific than in the Eastern Pacific populations; and iv) future climate change is expected to open new migratory routes for gray whales.Our results indicate that gray whale genomes contain low nucleotide diversity and have been subject to both historical and recent inbreeding. Population sizes over the last million years likely peaked about 25,000 years before present and have declined since then. Our niche modelling suggests that novel migratory routes may develop within the next century and if so this could help retain overall genetic diversity, which is essential for adaption and successful recovery in light of global environmental change and past exploitation

    Data from: Genetic data reveal mixed-stock aggregations of gray whales in the North Pacific Ocean

    No full text
    Gray whales (Eschrichtius robustus) in the Western Pacific are critically endangered whereas in the Eastern Pacific they are relatively common. Holocene environmental changes and commercial whaling reduced their numbers, but gray whales in the Eastern Pacific now outnumber their Western counterparts by more than 100-fold. Herein, we investigate the genetic diversity and population structure within the species using a panel of genic SNPs. Results indicate the gray whale gene pool is differentiated into two substocks containing similar levels of genetic diversity, and that both our Eastern and Western geographic samples represent mixed-stock aggregations. Ongoing or future gene flow between the stocks may conserve genetic diversity overall but admixture has implications for conservation of the critically endangered Western gray whale

    Data from: Age specific survival rates of Steller sea lions at rookeries with divergent population trends in the Russian Far East

    No full text
    After a dramatic population decline, Steller sea lions have begun to recover throughout most of their range. However, Steller sea lions in the Western Aleutians and Commander Islands are continuing to decline. Comparing survival rates between regions with different population trends may provide insights into the factors driving the dynamics, but published data on vital rates have been extremely scarce, especially in regions where the populations are still declining. Fortunately, an unprecedented dataset of marked Steller sea lions at rookeries in the Russian Far East is available, allowing us to determine age and sex specific survival in sea lions up to 22 years old. We focused on survival rates in three areas in the Russian range with differing population trends: the Commander Islands (Medny Island rookery), Eastern Kamchatka (Kozlov Cape rookery) and the Kuril Islands (four rookeries). Survival rates differed between these three regions, though not necessarily as predicted by population trends. Pup survival was higher where the populations were declining (Medny Island) or not recovering (Kozlov Cape) than in all Kuril Island rookeries. The lowest adult (> 3 years old) female survival was found on Medny Island and this may be responsible for the continued population decline there. However, the highest adult survival was found at Kozlov Cape, not in the Kuril Islands where the population is increasing, so we suggest that differences in birth rates might be an important driver of these divergent population trends. High pup survival on the Commander Islands and Kamchatka Coast may be a consequence of less frequent (e.g. biennial) reproduction there, which may permit females that skip birth years to invest more in their offspring, leading to higher pup survival, but this hypothesis awaits measurement of birth rates in these areas

    Data from: Characterization of the gray whale Eschrichtius robustus genome and a genotyping array based on single-nucleotide polymorphisms in candidate genes

    No full text
    Genetic and genomic approaches have much to offer in terms of ecology, evolution, and conservation. To better understand the biology of the gray whale Eschrichtius robustus (Lilljeborg, 1861), we sequenced the genome and produced an assembly that contains ∼95% of the genes known to be highly conserved among eukaryotes. From this assembly, we annotated 22,711 genes and identified 2,057,254 single-nucleotide polymorphisms (SNPs). Using this assembly, we generated a curated list of candidate genes potentially subject to strong natural selection, including genes associated with osmoregulation, oxygen binding and delivery, and other aspects of marine life. From these candidate genes, we queried 92 autosomal protein-coding markers with a panel of 96 SNPs that also included 2 sexing and 2 mitochondrial markers. Genotyping error rates, calculated across loci and across 69 intentional replicate samples, were low (0.021%), and observed heterozygosity was 0.33 averaged over all autosomal markers. This level of variability provides substantial discriminatory power across loci (mean probability of identity of 1.6 × 10−25 and mean probability of exclusion >0.999 with neither parent known), indicating that these markers provide a powerful means to assess parentage and relatedness in gray whales. We found 29 unique multilocus genotypes represented among our 36 biopsies (indicating that we inadvertently sampled 7 whales twice). In total, we compiled an individual data set of 28 western gray whales (WGSs) and 1 presumptive eastern gray whale (EGW). The lone EGW we sampled was no more or less related to the WGWs than expected by chance alone. The gray whale genomes reported here will enable comparative studies of natural selection in cetaceans, and the SNP markers should be highly informative for future studies of gray whale evolution, population structure, demography, and relatedness

    Age Specific Survival Rates of Steller Sea Lions at Rookeries with Divergent Population Trends in the Russian Far East

    No full text
    <div><p>After a dramatic population decline, Steller sea lions have begun to recover throughout most of their range. However, Steller sea lions in the Western Aleutians and Commander Islands are continuing to decline. Comparing survival rates between regions with different population trends may provide insights into the factors driving the dynamics, but published data on vital rates have been extremely scarce, especially in regions where the populations are still declining. Fortunately, an unprecedented dataset of marked Steller sea lions at rookeries in the Russian Far East is available, allowing us to determine age and sex specific survival in sea lions up to 22 years old. We focused on survival rates in three areas in the Russian range with differing population trends: the Commander Islands (Medny Island rookery), Eastern Kamchatka (Kozlov Cape rookery) and the Kuril Islands (four rookeries). Survival rates differed between these three regions, though not necessarily as predicted by population trends. Pup survival was higher where the populations were declining (Medny Island) or not recovering (Kozlov Cape) than in all Kuril Island rookeries. The lowest adult (> 3 years old) female survival was found on Medny Island and this may be responsible for the continued population decline there. However, the highest adult survival was found at Kozlov Cape, not in the Kuril Islands where the population is increasing, so we suggest that differences in birth rates might be an important driver of these divergent population trends. High pup survival on the Commander Islands and Kamchatka Coast may be a consequence of less frequent (e.g. biennial) reproduction there, which may permit females that skip birth years to invest more in their offspring, leading to higher pup survival, but this hypothesis awaits measurement of birth rates in these areas.</p></div
    corecore