80 research outputs found

    Development of the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale

    No full text
    International audienceEnvironment Canada has been developing a community environmental modelling system (Modélisation Environmentale Communautaire ? MEC), which is designed to facilitate coupling between models focusing on different components of the earth system. The ultimate objective of MEC is to use the coupled models to produce operational forecasts. MESH (MEC ? Surface and Hydrology), a configuration of MEC currently under development, is specialized for coupled land-surface and hydrological models. To determine the specific requirements for MESH, its different components were implemented on the Laurentian Great Lakes watershed, situated on the Canada-US border. This experiment showed that MESH can help us better understand the behaviour of different land-surface models, test different schemes for producing ensemble streamflow forecasts, and provide a means of sharing the data, the models and the results with collaborators and end-users. This modelling framework is at the heart of a testbed proposal for the Hydrologic Ensemble Prediction Experiment (HEPEX) which should allow us to make use of the North American Ensemble Forecasting System (NAEFS) to improve streamflow forecasts of the Great Lakes tributaries, and demonstrate how MESH can contribute to a Community Hydrologic Prediction System (CHPS)

    Using the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale

    No full text
    International audienceEnvironment Canada has been developing a community environmental modelling system (Modélisation Environmentale Communautaire ? MEC), which is designed to facilitate coupling between models focusing on different components of the earth system. The ultimate objective of MEC is to use the coupled models to produce operational forecasts. MESH (MEC ? Surface and Hydrology), a configuration of MEC currently under development, is specialized for coupled land-surface and hydrological models. To determine the specific requirements for MESH, its different components were implemented on the Laurentian Great Lakes watershed, situated on the Canada?U.S. border. This experiment showed that MESH can help us better understand the behaviour of different land-surface models, test different schemes for producing ensemble streamflow forecasts, and provide a means of sharing the data, the models and the results with collaborators and end-users. This modelling framework is at the heart of a testbed proposal for the Hydrologic Ensemble Prediction Experiment (HEPEX) which should allow us to make use of the North American Ensemble Forecasting System (NAEFS) to improve streamflow forecasts of the Great Lakes tributaries, and demonstrate how MESH can contribute to a Community Hydrologic Prediction System (CHPS)

    GLACE: the global land–atmosphere coupling experiment. Part I: overview

    Get PDF
    Permission to place copies of these works on this server has been provided by the American Meteorological Society (AMS). The AMS does not guarantee that the copies provided here are accurate copies of the published work. © Copyright 2006 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or [email protected] Global Land–Atmosphere Coupling Experiment (GLACE) is a model intercomparison study focusing on a typically neglected yet critical element of numerical weather and climate modeling: land–atmosphere coupling strength, or the degree to which anomalies in land surface state (e.g., soil moisture) can affect rainfall generation and other atmospheric processes. The 12 AGCM groups participating in GLACE performed a series of simple numerical experiments that allow the objective quantification of this element for boreal summer. The derived coupling strengths vary widely. Some similarity, however, is found in the spatial patterns generated by the models, with enough similarity to pinpoint multimodel “hot spots” of land–atmosphere coupling. For boreal summer, such hot spots for precipitation and temperature are found over large regions of Africa, central North America, and India; a hot spot for temperature is also found over eastern China. The design of the GLACE simulations are described in full detail so that any interested modeling group can repeat them easily and thereby place their model’s coupling strength within the broad range of those documented here

    Diversity and Functional Traits of Lichens in Ultramafic Areas: A Literature Based Worldwide Analysis Integrated by Field Data at the Regional Scale

    Get PDF
    While higher plant communities found on ultramafics are known to display peculiar characteristics, the distinguishability of any peculiarity in lichen communities is still a matter of contention. Other biotic or abiotic factors, rather than substrate chemistry, may contribute to differences in species composition reported for lichens on adjacent ultramafic and non-ultramafic areas. This work examines the lichen biota of ultramafics, at global and regional scales, with reference to species-specific functional traits. An updated world list of lichens on ultramafic substrates was analyzed to verify potential relationships between diversity and functional traits of lichens in different Köppen–Geiger climate zones. Moreover, a survey of diversity and functional traits in saxicolous communities on ultramafic and non-ultramafic substrates was conducted in Valle d’Aosta (North-West Italy) to verify whether a relationship can be detected between substrate and functional traits that cannot be explained by other environmental factors related to altitude. Analyses (unweighted pair group mean average clustering, canonical correspondence analysis, similarity-difference-replacement simplex approach) of global lichen diversity on ultramafic substrates (2314 reports of 881 taxa from 43 areas) displayed a zonal species distribution in different climate zones rather than an azonal distribution driven by the shared substrate. Accordingly, variations in the frequency of functional attributes reflected reported adaptations to the climate conditions of the different geographic areas. At the regional scale, higher similarity and lower species replacement were detected at each altitude, independent from the substrate, suggesting that altitude-related climate factors prevail over putative substrate–factors in driving community assemblages. In conclusion, data do not reveal peculiarities in lichen diversity or the frequency of functional traits in ultramafic areas
    corecore