600 research outputs found

    Electric fishery on brown shrimp

    Get PDF

    Slimmer verwerken, bijvangst beperken

    Get PDF

    Generalised Kanzaki force field of extended defects in crystals, with applications to the modelling of edge dislocations

    Get PDF
    The Kanzaki forces and their associated multipolar moments are standard ways of representing point defects in an atomistically informed way in the continuum. In this article, the Kanzaki force approach is extended to other crystalline defects. The article shows how the resulting Kanzaki force fields are to be computed for any general extended defect by first computing the relaxed defect's structure and then defining an affine mapping between the said defect structure and the original perfect lattice. This methodology can be employed to compute the Kanzaki force field of any mass-conserving defect, including dislocations, grain and twin boundaries, or cracks. Particular focus is then placed on straight edge dislocation in face-centered cubic (fcc) and body-centered cubic (bcc) pure metals, which are studied along different crystallographic directions. The particular characteristics of these force fields are discussed, drawing a distinction between the slip Kanzaki force field associated with the Volterra disregistry that characterizes the dislocation, and the core Kanzaki force field associated with the specific topology of the dislocation's core. The resulting force fields can be employed to create elastic models of the dislocation that, unlike other regularization procedures, offer a geometrically true representation of the core and the elastic fields in its environs, capturing all three-dimensional effects associated with the core

    Laboratory study of the impact of repetitive electrical and mechanical stimulation on brown shrimp Crangon crangon

    Get PDF
    Pulse trawling is currently the best available alternative to beam trawling in the brown shrimp Crangon crangon and Sole Solea solea (also known as Solea vulgaris) fisheries. To evaluate the effect of repetitive exposure to electrical fields, brown shrimp were exposed to the commercial electrodes and pulse settings used to catch brown shrimp (shrimp startle pulse) or Sole (Sole cramp pulse) 20 times in 4 d and monitored for up to 14 d after the first exposure. Survival, egg loss, molting, and the degree of intranuclear bacilliform virus (IBV) infection were evaluated and compared with those in stressed but not electrically exposed (procedural control) and nonstressed, nonexposed (control) brown shrimp as well as brown shrimp exposed to mechanical stimuli. The lowest survival at 14 d (57.3%) occurred in the Sole cramp pulse treatment, and this was significantly lower than in the group with the highest survival, the procedural control (70.3%). No effect of electrical stimulation on the severity of IBV infection was found. The lowest percentage of molts occurred in the repetitive mechanical stimulation treatment (14.0%), and this was significantly lower than in the group with the highest percentage of molts, the procedural control (21.7%). Additionally, the mechanically stimulated brown shrimp that died during the experiment had a significantly larger size than the surviving individuals. Finally, no effect of the shrimp startle pulse was found. Therefore, it can be concluded that repetitive exposure to a cramp stimulus and mechanical stimulation may have negative effects on the growth and/or survival of brown shrimp. However, there is no evidence that electrical stimulation during electrotrawls would have a larger negative impact on brown shrimp stocks than mechanical stimulation during conventional beam trawling

    Tropical tree cover in a heterogeneous environment: a reaction-diffusion model

    Get PDF
    This is the final version. Available from Public Library of Science via the DOI in this record.Observed bimodal tree cover distribution sat particular environmental conditions and theoretical models indicate that some areas in the tropics can be in either of the alternative stable vegetation states forest or savanna.However,when including spatial interaction in nonspatial differential equation models of a bistable quantity, only the state with the lowest potential energy remains stable. Our recent reaction-diffusion model of Amazonian tree cover confirmed this and was able to reproduce the observed spatial distribution of forest versus savanna satisfactorily when forced by heterogeneous environmental and anthropogenic variables, even though bistability was underestimated. These conclusions were solely based on simulation results for one set of parameters. Here, we perform ananalytical and numerical analysis of the model. We derive the Maxwell point (MP) of the homogeneous reaction-diffusion equation without savanna trees as a function of rainfall and human impact and show that the front between forest and nonforest settles at this point as long as savanna tree cover near the front remains sufficiently low. For parameters resulting in higher savanna tree cover near the front, we also find irregular forest-savanna cycles and woodland-savanna bistability, which can both explain the remaining observed bimodality.EPSR

    Can two-dimensional measured peak sagittal plane excursions during drop vertical jumps help identify three-dimensional measured joint moments?

    Get PDF
    Background: Less optimal sagittal plane movement patterns are believed to increase knee injury risk in female athletes. To facilitate clinical screening with a user-friendly method, the purpose of the present study was to examine the temporal relationships between two-dimensional measured sagittal plane kinematics and three-dimensional joint moments during the double-leg drop vertical jump (DVJ) and single-leg DVJ (SLDVJ). Methods: Fifty injury-free female athletes were tested. Maximal excursions of hip flexion, knee flexion and ankle dorsiflexion were measured through two-dimensional video analysis. Three-dimensional motion and ground reaction forces were recorded to calculate external hip flexion, knee flexion and knee abduction moments during the entire stance phase of DVJ and SLDVJ. One-dimensional statistical parametric mapping was used to examine relationships between peak two-dimensional kinematic variables and three-dimensional moment profiles. Results: Hip flexion was significantly related to the hip and knee flexion moment for both tests and knee abduction moment for DVJ during the time frames corresponding with highest three-dimensional moments, while knee flexion was significantly related to the hip flexion moment during these time frames. No significant relationships were found for ankle dorsiflexion with any of the joint moments. Conclusions: Two-dimensional measured sagittal plane hip flexion angles at the deepest landing position were associated with peak joint moments of the hip and knee during DVJ and SLDVJ, while the amount of knee flexion was only associated with the hip flexion moment. Assessment of knee injury risk with two-dimensional video analysis could benefit from measuring maximal hip flexion, more so than knee flexion
    corecore